# Number Theory Seminar

Recall that an integer n is called y-smooth when each of its prime divisors is less than or equal to y. It is conjectured that, for any a>0, any polynomial of positive degree having integral coefficients should possess infinitely many values at integral arguments n that are n^a-smooth. One could consider this problem to be morally “dual” to the cognate problem of establishing that irreducible polynomials assume prime values infinitely often, unless local conditions preclude this possibility. This smooth values conjecture is known to be true in several different ways for linear polynomials, but in general remains unproven for any degree exceeding 1. We will describe some limited progress in the direction of the conjecture, highlighting along the way analogous conclusions for polynomial smoothness. Despite being motivated by a problem in analytic number theory, most of the methods make use of little more than pre-Galois theory. A guest appearance will be made by several hyperelliptic curves. [This talk is based on work joint with Jonathan Bober, Dan Fretwell and Greg Martin].