Numerical Analysis Group Internal Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
1 May 2018
14:00
Lindon Roberts
Abstract

Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem, which is typically solved using the Gauss-Newton method. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and randomised sketching can be used to improve the scalability of Gauss-Newton for bundle adjustment problems.

  • Numerical Analysis Group Internal Seminar
8 May 2018
14:30
Afaf Bouharguane
Abstract

We consider numerical methods for solving  time dependent partial differential equations with convection-diffusion terms and anti-diffusive fractional operator of order $\alpha \in (1,2)$. These equations are motivated by two distinct applications: a dune morphodynamics model and a signal filtering method. 
We propose numerical schemes based on local discontinuous Galerkin methods to approximate the solutions of these equations. Numerical stability and convergence of these schemes are investigated. 
Finally numerical experiments are given to illustrate qualitative behaviors of solutions for both applications and to confirme the convergence results. 

  • Numerical Analysis Group Internal Seminar
15 May 2018
14:00
Radu Cimpeanu
Abstract

Many problems that involve the propagation of time-harmonic waves are naturally posed in unbounded domains. For instance, a common problem in the are a of acoustic scattering is the determination of the sound field that is generated when an incoming time-harmonic wave (which is assumed to arrive ``from infinity'') impinges onto a solid body (the scatterer). The boundary
conditions to be applied on the surface of the scatterer (most often of Dirichlet, Neumann or Robin type) tend to be easy to enforce in most numerical solution schemes. Conversely, the imposition of a suitable decay condition (typically a variant of the Sommerfeld radiation condition), which is required to ensure the well-posedness of the solution, is considerably more involved. As a result, many numerical schemes generate spurious reflections from the outer boundary of the finite computational domain.


Perfectly matched layers (PMLs) are in this context a versatile alternative to the usage of classical approaches such as employing absorbing boundary conditions or Dirichlet-to-Neumann mappings, but unfortunately most PML formulations contain adjustable parameters which have to be optimised to give the best possible performance for a particular problem. In this talk I will present a parameter-free PML formulation for the case of the two-dimensional Helmholtz equation. The performance of the proposed method is demonstrated via extensive numerical experiments, involving domains with smooth and polygonal boundaries, different solution types (smooth and singular, planar and non-planar waves), and a wide range of wavenumbers (R. Cimpeanu, A. Martinsson and M.Heil, J. Comp. Phys., 296, 329-347 (2015)). Possible extensions and generalisations will also be touched upon.

  • Numerical Analysis Group Internal Seminar
22 May 2018
14:00
Dr Dante Kalise
Abstract

In this talk we address the numerical approximation of Mean Field Games with local couplings. For finite difference discretizations of the Mean Field Game system, we follow a variational approach, proving that the schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter. We conclude by presenting numerical experiments assessing the performance of the proposed methods. In collaboration with L. Briceno-Arias (Valparaiso, CL) and F. J. Silva (Limoges, FR).

  • Numerical Analysis Group Internal Seminar
29 May 2018
14:00
Chris Farmer
Abstract

This talk will review the main Tikhonov and Bayesian smoothing formulations of inverse problems for dynamical systems with partially observed variables and parameters. The main contenders: strong-constraint, weak-constraint and penalty function formulations will be described. The relationship between these formulations and associated optimisation problems will be revealed.  To close we will indicate techniques for maintaining sparsity and for quantifying uncertainty.

  • Numerical Analysis Group Internal Seminar
5 June 2018
14:00
Abstract

In this talk, first we  address the convergence issues of a standard finite volume element method (FVEM) applied to simple elliptic problems. Then, we discuss discontinuous finite volume element methods (DFVEM) for elliptic problems  with emphasis on  computational and theoretical  advantages over the standard FVEM. Further, we present a natural extension of DFVEM employed for the elliptic problem to the Stokes problems. We also discuss suitability of these methods for the approximation of incompressible miscible displacement problems.
 

  • Numerical Analysis Group Internal Seminar
Add to My Calendar