Numerical Analysis Group Internal Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
15 October 2019
14:00
Anna Seigal
Abstract

Matrix congruence extends naturally to the setting of tensors. We apply methods from tensor decomposition, algebraic geometry, and numerical optimization to the group action. Given a tensor in the orbit of another tensor, we compute a matrix which transforms one to the other. Our primary application is an inverse problem from stochastic analysis: the recovery of paths from their third order signature tensors. We establish identifiability results, both exact and numerical, for piecewise linear paths and polynomial paths, and discuss open problems concerning the condition number of the recovery problem. Based on joint work with Max Pfeffer and Bernd Sturmfels.
 

  • Numerical Analysis Group Internal Seminar
5 November 2019
14:00
Maha Kaouri
Abstract

The variational data assimilation (VarDA) problem is usually solved using a method equivalent to Gauss-Newton (GN) to obtain the initial conditions for a numerical weather forecast. However, GN is not globally convergent and if poorly initialised, may diverge such as when a long time window is used in VarDA; a desirable feature that allows the use of more satellite data. To overcome this, we apply two globally convergent GN variants (line search & regularisation) to the long window VarDA problem and show when they locate a more accurate solution versus GN within the time and cost available.
Joint work with Coralia Cartis, Amos S. Lawless, Nancy K. Nichols.

  • Numerical Analysis Group Internal Seminar
5 November 2019
14:30
Sophy Oliver
Abstract

Ocean biogeochemical models used in climate change predictions are very computationally expensive and heavily parameterised. With derivatives too costly to compute, we optimise the parameters within one such model using derivative-free algorithms with the aim of finding a good optimum in the fewest possible function evaluations. We compare the performance of the evolutionary algorithm CMA-ES which is a stochastic global optimization method requiring more function evaluations, to the Py-BOBYQA and DFO-LS algorithms which are local derivative-free solvers requiring fewer evaluations. We also use initial Latin Hypercube sampling to then provide DFO-LS with a good starting point, in an attempt to find the global optimum with a local solver. This is joint work with Coralia Cartis and Samar Khatiwala.
 

  • Numerical Analysis Group Internal Seminar
12 November 2019
14:00
Ioannis Papadopoulos
Abstract

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE and volume constraints. There are many formulations and we opt for the density approach which results in a PDE, volume and inequality constrained, non-convex, infinite-dimensional optimisation problem without a priori knowledge of a good initial guess. Such problems can exhibit many local minima or even no minima. In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of cases. In this talk, we will present an algorithm that solves such problems and systematically discovers as many of these local minima as possible along the way.  

  • Numerical Analysis Group Internal Seminar

Pages

Add to My Calendar