I will present a construction of large families of singularity-free stationary solutions of Einstein equations, for a large class of matter models including vacuum, with a negative cosmological constant. The solutions, which are of course real-valued Lorentzian metrics, are determined by a set of free data at conformal infinity, and the construction proceeds through elliptic equations for complex-valued tensor fields. One thus obtains infinite dimensional families of both strictly stationary spacetimes and black hole spacetimes.

# Partial Differential Equations Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

In recent years it has been discovered that also non-linear, degenerate equations like the $p$-Poisson equation $$ -\mathrm{div}(A(\nabla u))= - \mathrm{div} (|\nabla u|^{{p-2}}\nabla u)= -{\rm div} F$$ allow for optimal regularity. This equation has similarities to the one of power-law fluids. In particular, the non-linear mapping $F \mapsto A(\nabla u)$ satisfies surprisingly the linear, optimal estimate $\|A(\nabla u)\|_X \le c\, \|F\|_X$ for several choices of spaces $X$. In particular, this estimate holds for Lebesgue spaces $L^q$ (with $q \geq p'$), spaces of bounded mean oscillations and Holder spaces$C^{0,\alpha}$ (for some $\alpha>0$).

In this talk we show that we can extend this theory to Sobolev and Besov spaces of (almost) one derivative. Our result are restricted to the case of the plane, since we use complex analysis in our proof. Moreover, we are restricted to the super-linear case $p \geq 2$, since the result fails $p < 2$. Joint work with Anna Kh. Balci, Markus Weimar.

We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections, and existence of regular reflection solutions for potential flow equation. Then we will talk about recent results on uniqueness and stability of regular reflection solutions for potential flow equation in a natural class of self-similar solutions. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear elliptic equation, and prove uniqueness by a version of method of continuity. A property of solutions important for the proof of uniqueness is convexity of the free boundary.

This talk is based on joint works with G.-Q. Chen and W. Xiang.