Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
28 October 2019
Johan Martens

Further Information: 

The Hitchin connection is a flat projective connection on bundles of non-abelian theta-functions over the moduli space of curves, originally introduced by Hitchin in a Kahler context.  We will describe a purely algebra-geometric construction of this connection that also works in (most)positive characteristics.  A key ingredient is an alternative to the Narasimhan-Atiyah-Bott Kahler form on the moduli space of bundles on a curve.  We will comment on the connection with some related topics, such as the Grothendieck-Katz p-curvature conjecture.  This is joint work with Baier, Bolognesi and Pauly.


  • Geometry and Analysis Seminar
28 October 2019

Abstract: Gaussian multiplicative chaos (GMC) has attracted a lot of attention in recent years due to its applications in many areas such as Liouville CFT and random matrix theory, but despite its importance not much has been known about its distributional properties. In this talk I shall explain the study of the tail probability of subcritical GMC and establish a precise formula for the leading order asymptotics, resolving a conjecture of Rhodes and Vargas.

  • Stochastic Analysis & Mathematical Finance Seminars
29 October 2019
Priya Subramanian

Complex spatial patterns such as superlattice patterns and quasipatterns occur in a variety of physical systems ranging from vibrated fluid layers to crystallising soft matter. Reduced order models that describe such systems are usually PDEs. Close to a phase transition, modal expansion along with perturbation methods can be applied to convert the PDEs to normal form equations in the form of coupled ODEs. I use equivariant bifurcation theory along with homotopy methods (developed in computational algebraic geometry) to obtain all solutions of the normal form equations in a non-iterative method. I want to talk about how this approach allows us to ask new questions about the physical systems of interest and what extensions to this method might be possible. This forms a step in my long-term interest to explore how to better ‘complete’ a bifurcation diagram!

  • Numerical Analysis Group Internal Seminar


Add to My Calendar