Systems that have more than one conserved quantity (i.e. energy plus momentum, density etc.), can exhibit quite interesting temperature profiles in non-equilibrium stationary states. I will present some numerical experiment and mathematical result. I will also expose some other connected problems, always concerning thermal boundary conditions in hydrodynamic limits.

# Past PDE CDT Lunchtime Seminar

Patlak-Keller-Segel equations

\[

\begin{aligned}

u_t - L u &= - \mathop{\text{div}\,} (u \nabla v) \\

v_t - \Delta v &= u,

\end{aligned}

\]

where L is a dissipative operator, stem from mathematical chemistry and mathematical biology.

Their variants describe, among others, behaviour of chemotactic populations, including feeding strategies of zooplankton or of certain insects. Analytically, Patlak-Keller-Segel equations reveal quite rich dynamics and a delicate global smoothness vs. blowup dichotomy.

We will discuss smoothness/blowup results for popular variants of the equations, focusing on the critical cases, where dissipative and aggregative forces seem to be in a balance. A part of this talk is based on joint results with Rafael Granero-Belinchon (Lyon).

Tbd

We prove higher differentiability of bounded local minimizers to some degenerate functionals satisfying anisotropic growth conditions. In the two-dimensional case we also study the Lipschitz regularity of such minimizers without any limitation on the exponents of anisotropy.

Tbd

I'll discuss the problem of controlling energy concentration in YM flow over a four-manifold. Based on a study of the rotationally symmetric case, it was conjectured in 1997 that bubbling can only occur at infinite time. My thesis contained some strong elementary results on this problem, which I've now solved in full generality by a more involved method.