Past History of Mathematics

27 July 2018
16:30
Anjing Qu
Abstract

In the 6th century, the phenomena of irregularity of the solar motion and parallax of the moon were found by Chinese astronomers. This made the calculation of solar eclipse much more complex than before. The strategy that Chinese calendar-makers dealt with was different from the geometrical model system like Greek astronomers taken as. What Chinese astronomers chose is a numerical algorithm system which was widely taken as a thinking mode to construct the theory of mathematical astronomy in old China. 

  • History of Mathematics
27 July 2018
16:00
Howard Emmens
Abstract

Relatively little is known about the correspondence of William Burnside, a pioneer of group theory in the UK. There are only a few dozen extant letters from or to him, though they are not without interest. However, one of the most noteworthy letters to or at least about him, in that it had a special mention in his obituary in the Proceedings of the Royal Society, has not been positively identified. It's not clear who it was from or when it was sent. We'll look at some possibilities.

  • History of Mathematics
27 July 2018
15:00
Christopher Hollings
Abstract

The International Congresses of Mathematicians (ICMs) have taken place at (reasonably) regular intervals since 1897, and although their participants may have wanted to confine these events purely to mathematics, they could not help but be affected by wider world events.  This is particularly true of the 1936 ICM, held in Oslo.  In this talk, I will give a whistle-stop tour of the early ICMs, before discussing the circumstances of the Oslo meeting, with a particular focus on the activities of the Nazi-led German delegation.

  • History of Mathematics
27 July 2018
14:30
Eduardo Dorrego López
Abstract

The emergence of analytic methods in the 17th century opened a new way in order to tackle the elucidation of certain quantities. The strong presence of the circle-squaring problem, focused mainly the attention on π, on which besides the serious doubts about its rationality, it arises an awareness---boosted by the new algebraic approach---of the difficulty of framing it inside algebraic boundaries. The term ``transcendence'' emerges in this context but with a very ambiguous meaning.

The first great step towards its comprehension, took place in the 18th century and came from Johann Heinrich Lambert's hand, who using a new analytical machinery---continued fractions---gave the first proof of irrationality of π. The problem of keeping this number inside the algebraic limits, also receives an especial attention at the end of his Mémoires sur quelques propriétés remarquables des quantités transcendantes, circulaires et logarithmiques, published by the Berlin Academy of Science in 1768. In this work, Lambert after giving to the term ``transcendence'' its modern meaning, conjectures the transcendence of π and therefore the impossibility of squaring the circle.

  • History of Mathematics
13 June 2018
16:00
Abstract

The Czech lands were the most industrial part of the Austrian-Hungarian monarchy, broken up at the end of the WW1. As such, Czechoslovakia inherited developed industry supported by developed system of tertiary education, and Czech and German universities and technical universities, where the first chairs for applied mathematics were set up. The close cooperation with the Skoda company led to the establishment of joint research institutes in applied mathematics and spectroscopy in 1929 (1934 resp.).

The development of industry was followed by a gradual introduction of social insurance, which should have helped to settle social contracts, fight with pauperism and prevent strikes. Social insurance institutions set up mathematical departments responsible for mathematical and statistical modelling of the financial system in order to ensure its sustainability. During the 1920s and 1930s Czechoslovakia brought its system of social insurance up to date. This is connected with Emil Schoenbaum, internationally renowned expert on insurance (actuarial) mathematics, Professor of the Charles University and one of the directors of the General Institute of Pensions in Prague.

After the Nazi occupation in 1939, Czech industry was transformed to serve armament of the Wehrmacht and the social system helped the Nazis to introduce the carrot and stick policy to keep weapons production running up to early 1945. There was also strong personal discontinuity, as the Jews and political opponents either fled to exile or were brutally persecuted.

  • History of Mathematics
15 May 2018
16:00
Yelda Nasifoglu
Abstract

Part of the series 'What do historians of mathematics do?'

Both as a canonical mathematical text and as a representative of ancient thought, Euclid's Elements of Geometry has been a subject of study since its creation c. 300 BCE. It has been read as a practical and a theoretical text; it has been studied for its philosophical ramifications and for its perceived potential to inculcate logical thought. For the historian, it is where the history of mathematics meets the history of ideas; where the history of the book meets the history of practice. The study of the Elements enjoyed a particular resurgence during the Early Modern period, when around 200 editions of the text appeared between 1482 and 1700.  Depending on their theoretical and practical functions, they ranged between elaborate folios and pocket-size compendia, and were widely studied by scholars, natural philosophers, mathematical practitioners, and schoolchildren alike.

In this talk, I will present some of the preliminary results of the research we have been conducting for the AHRC-funded project based at the History Faculty 'Reading Euclid: Euclid's Elements of Geometry in Early Modern Britain', paying particular attention to how the books were printed, collected, and annotated. I will concentrate on our methodologies and introduce the database we have been building of all the early modern copies of the text in the British Isles, as well as the 'catalogue of book catalogues'.

  • History of Mathematics
8 May 2018
16:00
Brigitte Stenhouse
Abstract

Part of the series 'What do historians of mathematics do?'

In 1873 the Personal Recollections from Early Life to Old Age of Mary Somerville were published, containing detailed descriptions of her life as a 19th century philosopher, mathematician and advocate of women's rights. In an early draft of this work, Somerville reiterated the widely held view that a fundamental difference between men and women was the latter's lack of originality, or 'genius'.

In my talk I will examine how Somerville's view was influenced by the historic treatment of women, both within scientific research, scientific institutions and wider society. By building on my doctoral research I will also suggest an alternative viewpoint in which her work in the differential calculus can be seen as original, with a focus on her 1834 treatise On the Theory of Differences.

  • History of Mathematics
1 May 2018
16:00
Abstract

Part of the series 'What do historians of mathematics do?'

In this talk, we will survey the movement of mathematical ideas in the 17th century. We will explore, in particular, the mathematical cultures of Paris, Amsterdam, Rome, Cape Town, Goa, Kyoto, Beijing, and London, as well as the journey of mathematical knowledge on a global scale. As it will be an ambitious task to complete a round-the-world history tour in an hour, the focus will be on East Asia. By employing the digital humanities technique, this presentation will use digital media to effectively show historical sources and help the audience imagine the world as a “round” entity when we discuss a global history of mathematics.

  • History of Mathematics
25 January 2018
17:00
Mark McCartney
Abstract

James Clerk Maxwell (1831–1879) was, by any measure, a natural philosopher of the first rank who made wide-ranging contributions to science. He also, however, wrote poetry.

In this talk examples of Maxwell’s poetry will be discussed in the context of a biographical sketch. It will be  argued that not only was Maxwell a good poet, but that his poetry enriches our view of his life and its intellectual context.

  • History of Mathematics

Pages