Given a vector space V over a field K, let End(V) denote the algebra of linear endomorphisms of V. If V is finite-dimensional, then it is well-known that the diagonalizable subalgebras of End(V) are characterized by their internal algebraic structure: they are the subalgebras isomorphic to K^n for some natural number n.

In case V is infinite dimensional, the diagonalizable subalgebras of End(V) cannot be characterized purely by their internal algebraic structure: one can find diagonalizable and non-diagonalizable subalgebras that are isomorphic. I will explain how to characterize the diagonalizable subalgebras of End(V) as topological algebras, using a natural topology inherited from End(V). I will also illustrate how this characterization relates to an infinite-dimensional Wedderburn-Artin theorem that characterizes "topologically semisimple" algebras.

# Past Algebra Seminar

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

We exhibit a construction in noncommutative nonnoetherian algebra that should be understood as a positive characteristic analogue of the Bernstein-Sato polynomial or b-function. Recall that the b-function is a polynomial in one variable attached to an analytic function f. It is well-known to be related to the singularities of f and is useful in continuing a certain type of zeta functions, associated with f. We will briefly recall the complex theory and then emphasize the arithmetic aspects of our construction.

The classification of irreducible representations of pin double covers of Weyl groups was initiated by Schur (1911) for the symmetric group and was completed for the other groups by A. Morris, Read and others about 40 years ago. Recently, a new relation between these projective representations, graded Springer representations, and the geometry of the nilpotent cone has emerged. I will explain these connections and the relation with a Dirac operator for (extended) graded affine Hecke algebras. The talk is partly based on joint work with Xuhua He.

A regular map is a highly symmetric embedding of a finite graph into a closed surface. I will describe a programme to study such embeddings for a rather large class of graphs: namely, the class of orbital graphs of finite simple groups.

Groups which act on rooted trees, and branch groups in particular, have provided examples of groups with exotic properties for the last three decades. This and their links to other areas of mathematics such as dynamical systems has made them the object of intense research.

One of their more useful properties is that of having a "tree-like" subgroup structure, in several senses.

I shall explain what this means in the talk and give some applications.

the only permitted defining relators are commutators of the generators. These groups and their subgroups play an important role in Geometric Group Theory, especially in view of the recent groundbreaking results of Haglund, Wise, Agol, and others, showing that many groups possess finite index subgroups that embed into RAAGs.

In their recent work on limit groups over right angled Artin groups, Casals-Ruiz and Kazachkov asked whether for every natural number n there exists a single "universal" RAAG, A_n, containing all n-generated subgroups of RAAGs. Motivated by this question, I will discuss several results showing that "universal" (in various contexts) RAAGs generally do not exist. I will also mention some positive results about universal groups for finitely presented n-generated subgroups of direct products of free and limit groups.

The commuting probability of a finite group is defined to be the probability that two randomly chosen group elements commute. Not all rationals between 0 and 1 occur as commuting probabilities. In fact Keith Joseph conjectured in 1977 that all limit points of the set of commuting probabilities are rational, and moreover that these limit points can only be approached from above. In this talk we'll discuss a structure theorem for commuting probabilities which roughly asserts that commuting probabilities are nearly Egyptian fractions of bounded complexity. Joseph's conjectures are corollaries.

We will introduce both the class of right-angled Artin groups (RAAG) and

the Nielsen realisation problem. Then we will discuss some recent progress

towards solving the problem.