Past Algebraic and Symplectic Geometry Seminar

13 October 2015
15:45
Travis Schedler
Abstract

Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities.  It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
 

  • Algebraic and Symplectic Geometry Seminar
9 June 2015
13:30
Valeri Alexeev
Abstract

By classical results of Mumford and Donagi, Mori-Mukai, Verra, the moduli spaces A_g of principally polarized abelian varieties of dimension g are unirational for g≤5 and are of general type for g≥7. Answering a conjecture of Kanev, we provide a uniformization of A6 by a Hurwitz space parameterizing certain curve covers. Using this uniformization, we study the geometry of A6 and make advances towards determining its birational type. This is a joint work with Donagi-Farkas-Izadi-Ortega.

  • Algebraic and Symplectic Geometry Seminar
5 May 2015
15:45
Diane Maclagan
Abstract

Tropicalization replaces a variety by a polyhedral complex that is a "combinatorial shadow" of the original variety.  This allows algebraic geometric problems to be attacked using combinatorial and
polyhedral techniques.  While this idea has proved surprisingly effective over the last decade, it has so far been restricted to the study of varieties and algebraic cycles.  I will discuss joint work with Felipe Rincon, building on work of Jeff and Noah Giansiracusa, to understand tropicalizing schemes, and more generally the concept of a tropical scheme.

  • Algebraic and Symplectic Geometry Seminar
28 April 2015
15:45
Andrew Morrison
Abstract

We describe the cohomology of moduli spaces of points on schemes over Abelian varieties and give explicit calculations for schemes in dimensions less that three. The construction of Gulbrandsen allows one to consider virtual motives in dimension three. In particular we see a new proof of his conjectures on the Euler numbers of generalized Kummer schemes recently proven by Shen. Joint work in progress with Junliang Shen.

  • Algebraic and Symplectic Geometry Seminar
28 April 2015
14:00
Artan Sheshmani
Abstract

I will talk about recent joint work with Amin Gholampour, Richard Thomas and Yukinobu Toda, on an algebraic-geometric proof of the S-duality conjecture in superstring theory, made formerly by physicists Gaiotto, Strominger, Yin, regarding the modularity of DT invariants of sheaves supported on hyperplane sections of the quintic Calabi-Yau threefold. Our strategy is to first use degeneration and localization techniques to reduce the threefold theory to a certain intersection theory over relative Hilbert scheme of points on surfaces and then prove modularity; More precisely, together with Gholampour we have proven that the generating series, associated to the top intersection numbers of the Hibert scheme of points, relative to an effective divisor, on a smooth quasi-projective surface is a modular form. This is a generalization of the result of Okounkov-Carlsson for absolute Hilbert schemes. These intersection numbers, together with the generating series of Noether-Lefschetz numbers, will provide the ingrediants to prove modularity of the above DT invariants over the quintic threefold.

  • Algebraic and Symplectic Geometry Seminar
3 March 2015
15:45
Dmitry Tonkonog
Abstract

Given a Lagrangian submanifold invariant under a Hamiltonian loop, we partially compute the image of the loop's Seidel element under the closed-open string map into the Hochschild cohomology of the Lagrangian. This piece captures the homology class of the loop's orbits on the Lagrangian and can help to prove that the closed-open map is injective in some examples. As a corollary we prove that $\mathbb{RP}^n$ split-generates the Fukaya category of $\mathbb{CP}^n$ over a field of characteristic 2, and the same for real loci of some other toric  varieties.

  • Algebraic and Symplectic Geometry Seminar

Pages