Past Algebraic Geometry Seminar

7 November 2017
15:45
Otto Overkamp
Abstract

We investigate Néron models of Jacobians of singular curves over strictly Henselian discretely valued fields, and their behaviour under tame base change. For a semiabelian variety, this behaviour is governed by a finite sequence of (a priori) real numbers between 0 and 1, called "jumps". The jumps are conjectured to be rational, which is known in some cases. The purpose of this paper is to prove this conjecture in the case where the semiabelian variety is the Jacobian of a geometrically integral curve with a push-out singularity. Along the way, we prove the conjecture for algebraic tori which are induced along finite separable extensions, and generalize Raynaud's description of the identity component of the Néron model of the Jacobian of a smooth curve (in terms of the Picard functor of a proper, flat, and regular model) to our situation. The main technical result of this paper is that the exact sequence which decomposes the Jacobian of one of our singular curves into its toric and Abelian parts extends to an exact sequence of Néron models. Previously, only split semiabelian varieties were known to have this property.

  • Algebraic Geometry Seminar
31 October 2017
15:45
Sara Filippini
Abstract

We consider a generalization of degeneracy loci of morphisms between vector bundles based on orbit closures of algebraic groups in their linear representations. Using a certain crepancy condition on the orbit closure we gain some control over the canonical sheaf in a preferred class of examples. This is notably the case for Richardson nilpotent orbits and partially decomposable skew-symmetric three-forms in six variables. We show how these techniques can be applied to construct Calabi-Yau manifolds and Fano varieties of dimension three and four.

This is a joint work with Vladimiro Benedetti, Laurent Manivel and Fabio Tanturri.

  • Algebraic Geometry Seminar
Today
15:45
Udi Hrushovski
Abstract

Hilbert's Nullstellensatz asserts the existence of a complex point satisfying lying on a given variety, provided there is no (ideal-theoretic) proof to the contrary.
I will describe an analogue for curves (of unbounded degree), with respect to conditions specifying that they lie on a given smooth variety, and have homology class
near a specified ray.   In particular, an analogue of the Lefschetz principle (relating large positive characteristic to characteristic zero) becomes available for such questions.
The proof is very close to a theorem of  Boucksom-Demailly-Pau-Peternell on moveable curves, but requires a certain sharpening.   This is part of a joint project with Itai Ben Yaacov, investigating the logic of the product formula; the algebro-geometric statement is needed for proving the existential closure of $\Cc(t)^{alg}$ in this language. 

  • Algebraic Geometry Seminar
17 October 2017
15:45
Thomas Prince
Abstract

Given a Fano manifold we will consider two ways of attaching a (usually infinite) collection of polytopes, and a certain combinatorial transformation relating them, to it. The first is via Mirror Symmetry, following a proposal of  Coates--Corti--Kasprzyk--Galkin--Golyshev. The second is via symplectic topology, and comes from considering degenerating Lagrangian torus fibrations. We then relate these two collections using the Gross--Siebert program. I will also comment on the situation in higher dimensions, noting particularly that by 'inverting' the second method (degenerating Lagrangian fibrations) we can produce topological constructions of Fano threefolds.
 

  • Algebraic Geometry Seminar

Pages