# Past Analytic Topology in Mathematics and Computer Science

CANCELLED - CANCELLED - CANCELLED

Abstract: Joint work with Syahida Che Dzul-Kifli

Let $f:X\to X$ be a continuous function on a compact metric space forming a discrete dynamical system. There are many definitions that try to capture what it means for the function $f$ to be chaotic. Devaney’s definition, perhaps the most frequently cited, asks for the function $f$ to be topologically transitive, have a dense set of periodic points and is sensitive to initial conditions. Bank’s et al show that sensitive dependence follows from the other two conditions and Velleman and Berglund show that a transitive interval map has a dense set of periodic points. Li and Yorke (who coined the term chaos) show that for interval maps, period three implies chaos, i.e. that the existence of a period three point (indeed of any point with period having an odd factor) is chaotic in the sense that it has an uncountable scrambled set.

The existence of a period three point is In this talk we examine the relationship between transitivity and dense periodic points and look for simple conditions that imply chaos in interval maps. Our results are entirely elementary, calling on little more than the intermediate value theorem.