Permutations of finitely many elements are often drawn as permutation diagrams. We take this point of view as a motivation to construct and describe more complicated algebras arising for instance from differential operators, from operators acting on (co)homologies, from invariant theory, or from Hecke algebras. The surprising fact is that these diagrams are elementary and simple to describe, but at the same time describe relations between cobordisms as well as categories of represenetations of p-adic groups. The goal of the talk is to give some glimpses of these phenomena and indicate which role categorification plays here.

# Past Colloquia

The law of quadratic reciprocity and the celebrated connection between modular forms and elliptic curves over Q are both examples of reciprocity laws. Constructing new reciprocity laws is one of the goals of the Langlands program, which is meant to connect number theory with harmonic analysis and representation theory.

In this talk, I will survey some recent progress in establishing new reciprocity laws, relying on the Galois representations attached to torsion classes which occur in the cohomology of arithmetic hyperbolic 3-manifolds. I will outline joint work in progress on better understanding these Galois representations, proving modularity lifting theorems in new settings, and applying this to elliptic curves over imaginary quadratic fields.

Self-organization is observed in systems driven by the “social engagement” of agents with their local neighbors. Prototypical models are found in opinion dynamics, flocking, self-organization of biological organisms, and rendezvous in mobile networks.

We discuss the emergent behavior of such systems. Two natural questions arise in this context. The underlying issue of the first question is how different rules of engagement influence the formation of clusters, and in particular, the emergence of 'consensus'. Different paradigms of emergence yield different patterns, depending on the propagation of connectivity of the underlying graphs of communication. The second question involves different descriptions of self-organized dynamics when the number of agents tends to infinity. It lends itself to “social hydrodynamics”, driven by the corresponding tendency to move towards the local means.

We discuss the global regularity of social hydrodynamics for sub-critical initial configurations.

Mathematical methods are increasingly being used to design auctions. Paul Klemperer will talk about some of his own experience which includes designing the U.K.'s mobile phone licence auction that raised £22.5 billion, and a new auction that helped the Bank of England in the financial crisis. (The then-Governor, Mervyn King, described it as "a marvellous application of theoretical economics to a practical problem of vital importance".) He will also discuss further development of the latter auction using convex and "tropical" geometric methods.

In two dimensional topological phases of matter, processes depend on gross topology rather than detailed geometry. Thinking in 2+1 dimensions, the space-time histories of particles can be interpreted as knots or links, and the amplitude for certain processes becomes a topological invariant of that link. While sounding rather exotic, we believe that such phases of matter not only exist, but have actually been observed (or could be soon observed) in experiments. These phases of matter could provide a uniquely practical route to building a quantum computer. Experimental systems of relevance include Fractional Quantum Hall Effects, Exotic superconductors such as Strontium Ruthenate, Superfluid Helium, Semiconductor-Superconductor-Spin-Orbit systems including Quantum Wires. The physics of these systems, and how they might be used for quantum computation will be discussed.

Let X be a complex algebraic variety containing a point x. One of the central ideas of deformation theory is that the local structure of X near the point x can be encoded by a differential graded Lie algebra. In this talk, Jacob Lurie will explain this idea and discuss some generalizations to more exotic contexts.

One of the big ideas in linear algebra is {\em eigenvalues}. Most matrices become in some basis {\em diagonal} matrices; so a lot of information about the matrix (which is specified by $n^2$ matrix entries) is encoded by by just $n$ eigenvalues. The fact that lots of different matrices can have the same eigenvalues reflects the fact that matrix multiplication is not commutative.

I'll look at how to make these vague statements (``lots of different matrices...") more precise; how to extend them from matrices to abstract symmetry groups; and how to relate abstract symmetry groups to matrices.

Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems. We present an introduction that emphasizes algebraic and geometric aspects

The question of deriving Fluid Mechanics equations from deterministic

systems of interacting particles obeying Newton's laws, in the limit

when the number of particles goes to infinity, is a longstanding open

problem suggested by Hilbert in his 6th problem. In this talk we shall

present a few attempts in this program, by explaining how to derive some

linear models such as the Heat, acoustic and Stokes-Fourier equations.

This corresponds to joint works with Thierry Bodineau and Laure Saint

Raymond.

Most networks and graphs encountered in empirical studies, including internet and web graphs, social networks, and biological and ecological networks, are very sparse. Standard spectral and linear algebra methods can fail badly when applied to such networks and a fundamentally different approach is needed. Message passing methods, such as belief propagation, offer a promising solution for these problems. In this talk I will introduce some simple models of sparse networks and illustrate how message passing can form the basis for a wide range of calculations of their structure. I will also show how message passing can be applied to real-world data to calculate fundamental properties such as percolation thresholds, graph spectra, and community structure, and how the fixed-point structure of the message passing equations has a deep connection with structural phase transitions in networks.