Past Colloquia

16 November 2018
15:00
Alan Sokal
Abstract

A matrix M of real numbers is called totally positive if every minor of M is nonnegative. This somewhat bizarre concept from linear algebra has surprising connections with analysis - notably polynomials and entire functions with real zeros, and the classical moment problem and continued fractions - as well as combinatorics. I will explain briefly some of these connections, and then introduce a generalization: a matrix M of polynomials (in some set of indeterminates) will be called coefficientwise totally positive if every minor of M is a polynomial with nonnegative coefficients. Also, a sequence (an)n≥0  of real numbers (or polynomials) will be called (coefficientwise) Hankel-totally positive if the Hankel matrix H = (ai+j)i,j ≥= 0 associated to (an) is (coefficientwise) totally positive. It turns out that many sequences of polynomials arising in enumerative combinatorics are (empirically) coefficientwise Hankel-totally positive; in some cases this can be proven using continued fractions, while in other cases it remains a conjecture.

2 November 2018
16:00
Jon Keating
Abstract

The moments of characteristic polynomials play a central role in Random Matrix Theory.  They appear in many applications, ranging from quantum mechanics to number theory.  The mixed moments of the characteristic polynomials of random unitary matrices, i.e. the joint moments of the polynomials and their derivatives, can be expressed recursively in terms of combinatorial sums involving partitions. However, these combinatorial sums are not easy to compute, and so this does not give an effective method for calculating the mixed moments in general. I shall describe an alternative evaluation of the mixed moments, in terms of solutions of the Painlevé V differential equation, that facilitates their computation and asymptotic analysis.

12 October 2018
16:00
Abstract

Consider a network of agents connected by communication links, where each agent holds a real value. The gossip problem consists in estimating the average of the values diffused in the network in a distributed manner. Current techniques for gossiping are designed to deal with worst-case scenarios, which is irrelevant in applications to distributed statistical learning and denoising in sensor networks. We design second-order gossip methods tailor-made for the case where the real values are i.i.d. samples from the same distribution. In some regular network structures, we are able to prove optimality of our methods, and simulations suggest that they are efficient in a wide range of random networks. Our approach of gossip stems from a new acceleration framework using the family of orthogonal polynomials with respect to the spectral measure of the network graph (joint work with Raphaël Berthier, and Pierre Gaillard).

15 June 2018
16:00
Abstract

Mathematical models based on first principles can describe the interaction between electrical, mechanical and fluid-dynamical processes occurring in the heart. This is a classical multi-physics problem. Appropriate numerical strategies need to be devised to allow for an effective description of the fluid in large and medium size arteries, the analysis of physiological and pathological conditions, and the simulation, control and shape optimisation of assisted devices or surgical prostheses. This presentation will address some of these issues and a few representative applications of clinical interest.

2 March 2018
16:00
Miranda Cheng
Abstract

The so-called moonshine phenomenon relates modular forms and finite group representations. After the celebrated monstrous moonshine, various new examples of moonshine connection have been discovered in recent years. The study of these new moonshine examples has revealed interesting connections to K3 surfaces, arithmetic geometry, and string theory.  In this colloquium I will give an overview of these recent developments. 
 

1 December 2017
16:00
Abstract

The theory of metric measure spaces with Ricci curvature from below is growing very quickly, both in the "Riemannian" class RCD and the general  CD one. I will review some of the most recent results, by illustrating the key identification results and technical tools (at the level of calculus in metric measure spaces) underlying these results.
 

10 November 2017
16:00
Professor Paul Riley, Professor Eleanor Stride
Abstract

The fourth QBIOX Colloquium will take place in the Mathematical Institute on Friday 10th November (5th week) and feature talks from Professor Paul Riley (Department of Pathology, Anatomy and Genetics / BHF Oxbridge Centre for Regenerative Medicine, https://www.dpag.ox.ac.uk/research/riley-group) and Professor Eleanor Stride (Institute of Biomedical Engineering, http://www.ibme.ox.ac.uk/research/non-invasive-therapy-drug-delivery/peo...).

1600-1645 - Paul Riley, "Enroute to mending broken hearts".
1645-1730 - Eleanor Stride, "Reducing tissue hypoxia for cancer therapy".
1730-1800 - Networking and refreshments.

We very much hope to see you there. As ever, tickets are not necessary, but registering to attend will help us with numbers for catering.
Please see the following link for further details and a link to register.
https://www.eventbrite.co.uk/e/qbiox-colloquium-michelmas-term-2017-tick...

Abstracts
Paul Riley - "En route to mending broken hearts".
We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing. 

Eleanor Stride - "Reducing tissue hypoxia for cancer therapy"
Hypoxia, i.e. a reduction in dissolved oxygen concentration below physiologically normal levels, has been identified as playing a critical role in the progression of many types of disease and as a key determinant of the success of cancer treatment. It poses a particular challenge for treatments such as radiotherapy, photodynamic and sonodynamic therapy which rely on the production of reactive oxygen species. Strategies for treating hypoxia have included the development of hypoxia-selective drugs as well as methods for directly increasing blood oxygenation, e.g. hyperbaric oxygen therapy, pure oxygen or carbogen breathing, ozone therapy, hydrogen peroxide injections and administration of suspensions of oxygen carrier liquids. To date, however, these approaches have delivered limited success either due to lack of proven efficacy and/or unwanted side effects. Gas microbubbles, stabilised by a biocompatible shell have been used as ultrasound contrast agents for several decades and have also been widely investigated as a means of promoting drug delivery. This talk will present our recent research on the use of micro and nanobubbles to deliver both drug molecules and oxygen simultaneously to a tumour to facilitate treatment.

20 October 2017
16:00
Robert Calderbank
Abstract

Coding theory revolves around the question of what can be accomplished with only memory and redundancy. When we ask what enables the things that transmit and store information, we discover codes at work, connecting the world of geometry to the world of algorithms.

This talk will focus on those connections that link the real world of Euclidean geometry to the world of binary geometry that we associate with Hamming.

Pages