Understanding the distribution of subgraph counts has long been a central question in the study of random graphs. In this talk, we consider the distribution of Sn, the number of K4 subgraphs, in the Erdös Rényi random graph G(n, p). When the edge probability p \in (0, 1) is constant, a classical central limit theorem for Sn states that (Sn−µn)/σn converges in distribution. We establish a stronger form of convergence, namely the corresponding local limit theorem, which is joint work with O. Riordan.

# Past Combinatorial Theory Seminar

A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.

The edge isoperimetric problem for a graph G is to find, for each n, the minimum number of edges leaving any set of n vertices. Exact solutions are known only in very special cases, for example when G is the usual cubic lattice on Z^d, with edges between pairs of vertices at l_1 distance 1. The most attractive open problem was to answer this question for the "strong lattice" on Z^d, with edges between pairs of vertices at l_infty distance 1. Whilst studying this question we in fact solved the edge isoperimetric problem asymptotically for every Cayley graph on Z^d. I'll talk about how to go from the specification of a lattice to a corresponding near-optimal shape, for both this and the related vertex isoperimetric problem, and sketch the key ideas of the proof. Joint work with Joshua Erde.

Reed conjectured in 1998 that the chromatic number of a graph should be at most the average of the clique number (a trivial lower bound) and maximum degree plus one (a trivial upper bound); in support of this conjecture, Reed proved that the chromatic number is at most some nontrivial convex combination of these two quantities. King and Reed later showed that a fraction of roughly 1/130000 away from the upper bound holds. Motivated by a paper by Bruhn and Joos, last year Bonamy, Perrett, and I proved that for large enough maximum degree, a fraction of 1/26 away from the upper bound holds. Then using new techniques, Delcourt and I showed that the list-coloring version holds; moreover, we improved the fraction for ordinary coloring to 1/13. Most recently, Kelly and I proved that a 'local' list version holds with a fraction of 1/52 wherein the degrees, list sizes, and clique sizes of vertices are allowed to vary.

Aharoni and Berger conjectured that in any bipartite multigraph that is properly edge-coloured by n colours with at least n+1 edges of each colour there must be a matching that uses each colour exactly once (such a matching is called rainbow). This conjecture recently have been proved asymptotically by Pokrovskiy. In this talk, I will consider the same question without the bipartiteness assumption. It turns out that in any multigraph with bounded edge multiplicities, that is properly edge-coloured by n colours with at least n+o(n) edges of each colour, there must be a matching of size n-O(1) that uses each colour at most once. This is joint work with Peter Keevash.

A subset S of initially infected vertices of a graph G is called *forcing* if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The *forcing number* of G is the minimum cardinality of a forcing set in G. It was introduced independently as a bound for the minimum rank of a graph, and as a tool in quantum information theory.

The focus of this talk is on the forcing number of the random graph. Furthermore, we will state our bounds on the forcing number of pseudorandom graphs and related problems. The results are joint work with Thomas Kalinowski and Benny Sudakov.

Enumerating families of combinatorial objects with given properties and describing the typical structure of these objects are fundamental problems in extremal combinatorics. In this talk, we will investigate intersecting families of discrete structures in various settings, determining their typical structure as the size of the underlying ground set tends to infinity. Our new approach outlines a general framework for a number of similar problems; in particular, we prove analogous results for hypergraphs, permutations, and vector spaces using the same technique. This is joint work with József Balogh, Shagnik Das, Hong Liu, and Maryam Sharifzadeh.

Given a graph $G$, we can form a hypergraph $H$ whose edges correspond to the triangles in $G$. If $G$ is the standard Erdős-Rényi random graph with independent edges, then $H$ is random, but its edges are not independent, because of overlapping triangles. This is (presumably!) a major complication when proving results about triangles in random graphs. However, it turns out that, for many purposes, we can treat the triangles as independent, in a one-sided sense (and losing something in the density): we can find an independent random hypergraph within the set of triangles. I will present two proofs, one of which generalizes to larger complete (and some non-complete) subgraphs.

Komlós conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when $d$ is sufficiently large. In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify. This is joint work with Hong Liu, Maryam Sharifzadeh and Katherine Staden.

It is well known that there is a finite colouring of the natural numbers such that there is no infinite set X with X+X (the pairwise sums from X, allowing repetition) monochromatic. It is easy to extend this to the rationals. Hindman, Leader and Strauss showed that there is also such a colouring of the reals, and asked if there exists a space 'large enough' that for every finite colouring there does exist an infinite X with X+X monochromatic. We show that there is indeed such a space. Joint work with Imre Leader.