Past Combinatorial Theory Seminar

12 June 2018
14:30
Will Perkins
Abstract

The last remaining open problem from Erdős and Rényi's original paper on random graphs is the following: for q at least 3, what is the largest d so that the random graph G(n,d/n) is q-colorable with high probability?  A lot of interesting work in probabilistic combinatorics has gone into proving better and better bounds on this q-coloring threshold, but the full answer remains elusive.  However, a non-rigorous method from the statistical physics of glasses - the cavity method - gives a precise prediction for the threshold.  I will give an introduction to the cavity method, with random graph coloring as the running example, and describe recent progress in making parts of the method rigorous, emphasizing the role played by tools from extremal combinatorics.  Based on joint work with Amin Coja-Oghlan, Florent Krzakala, and Lenka Zdeborová.

  • Combinatorial Theory Seminar
5 June 2018
14:30
Richard Montgomery
Abstract

It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.

I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
 

  • Combinatorial Theory Seminar
15 May 2018
14:30
Andrey Kupavskii
Abstract

Consider a family of k-element subsets of an n-element set, and assume that the family does not contain s pairwise disjoint sets. The well-known Erdos Matching Conjecture suggests the maximum size of such a family. Finding the maximum is trivial for n<(s+1)k and is relatively easy for n large in comparison to s,k. There was a splash of activity around the conjecture in the recent years, and, as far as the original question is concerned, the best result is due to Peter Frankl, who verified the conjecture for all n>2sk. In this work, we improve the bound of Frankl for any k and large enough s. We also discuss the connection of the problem to an old question on deviations of sums of random variables going back to the work of Hoeffding and Shrikhande.
 

  • Combinatorial Theory Seminar
8 May 2018
14:30
Noam Lifshitz
Abstract

Numerous problems in extremal hypergraph theory ask to determine the maximal size of a k-uniform hypergraph on n vertices that does not contain an 'enlarged' copy H^+ of a fixed hypergraph H. These include well-known  problems such as the Erdős-Sós 'forbidding one intersection' problem and the Frankl-Füredi 'special simplex' problem.


In this talk we present a general approach to such problems, using a 'junta approximation method' that originates from analysis of Boolean functions. We prove that any (H^+)-free hypergraph is essentially contained in a 'junta' -- a hypergraph determined by a small number of vertices -- that is also (H^+)-free, which effectively reduces the extremal problem to an easier problem on juntas. Using this approach, we obtain, for all C<k<n/C, a complete solution of the extremal problem for a large class of H's, which includes  the aforementioned problems, and solves them for a large new set of parameters.


Based on joint works with David Ellis and Nathan Keller
 

  • Combinatorial Theory Seminar
1 May 2018
14:30
David Wood
Abstract

We prove that the dimension of every poset whose comparability graph has maximum degree $\Delta$ is at most $\Delta\log^{1+o(1)} \Delta$. This result improves on a 30-year old bound of F\"uredi and Kahn, and is within a $\log^{o(1)}\Delta$ factor of optimal. We prove this result via the notion of boxicity. The boxicity of a graph $G$ is the minimum integer $d$ such that $G$ is the intersection graph of $d$-dimensional axis-aligned boxes. We prove that every graph with maximum degree $\Delta$ has boxicity at most $\Delta\log^{1+o(1)} \Delta$, which is also within a $\log^{o(1)}\Delta$ factor of optimal. We also show that the maximum boxicity of graphs with Euler genus $g$ is $\Theta(\sqrt{g \log g})$, which solves an open problem of Esperet and Joret and is tight up to a $O(1)$ factor. This is joint work with Alex Scott (arXiv:1804.03271).

  • Combinatorial Theory Seminar
20 February 2018
14:30
Peter Keevash
Abstract

We generalise the existence of combinatorial designs to the setting of subset sums in lattices with coordinates indexed by labelled faces of simplicial complexes. This general framework includes the problem of decomposing hypergraphs with extra edge data, such as colours and orders, and so incorporates a wide range of variations on the basic design problem, notably Baranyai-type generalisations, such as resolvable hypergraph designs, large sets of hypergraph designs and decompositions of designs by designs. Our method also gives approximate counting results, which is new for many structures whose existence was previously known, such as high dimensional permutations or Sudoku squares.

  • Combinatorial Theory Seminar
13 February 2018
14:30
Matthew Jenssen
Abstract

We give an alternative, statistical physics based proof of the Ω(d2^{-d}) lower bound for the maximum sphere packing density in dimension d by showing that a random configuration from the hard sphere model has this density in expectation. While the leading constant we achieve is not the best known, we do obtain additional geometric information: we prove a lower bound on the entropy density of sphere packings at this density, a measure of how plentiful such packings are. This is joint work with Felix Joos and Will Perkins.

  • Combinatorial Theory Seminar
23 January 2018
14:30
Paul Seymour
Abstract

The Gyárfás-Sumner conjecture says that every graph with huge (enough) chromatic number and bounded clique number contains any given forest as an induced subgraph. The Erdős-Hajnal conjecture says that for every graph H, all graphs not containing H as an induced subgraph have a clique or stable set of polynomial size. This talk is about a third problem related to both of these, the following. Say an n-vertex graph is "c-coherent" if every vertex has degree <cn, and every two disjoint vertex subsets of size at least cn have an edge between them. To prove a given graph H satisfies the Erdős-Hajnal conjecture, it is enough to prove H satisfies the conjecture in all c-coherent graphs and their complements, where c>0 is fixed and as small as we like. But for some graphs H, all c-coherent graphs contain H if c is small enough, so half of the task is done for free. Which graphs H have this property? Paths do (a theorem of Bousquet, Lagoutte, and Thomassé), and non-forests don't. Maybe all forests do? In other words, do all c-coherent graphs with c small enough contain any given forest as an induced subgraph? That question is the topic of the talk. It looks much like the Gyárfás-Sumner conjecture, but it seems easier, and there are already several pretty results. For instance the conjecture is true for all subdivided caterpillars (which is more than we know for Gyárfás-Sumner), and all trees of radius two. Joint work with Maria Chudnovsky, Jacob Fox, Anita Liebenau, Marcin Pilipczuk, Alex Scott and Sophie Spirkl.

  • Combinatorial Theory Seminar

Pages