Past Differential Equations and Applications Seminar

5 May 2011
16:00
to
17:30
Abstract
Human behaviour can show surprising properties when looked at from a collective point of view. Data on collective behaviour can be gleaned from a number of sources, and mobile phone data are increasingly becoming used. A major challenge is combining behavioural data with health data. In this talk I will describe our approach to understanding behaviour change related to change in health status at a collective level.
  • Differential Equations and Applications Seminar
10 March 2011
16:00
Nick Hill
Abstract
A mathematical model of Olufsen [1,2] has been extended to study periodic pulse propagation in both the systemic arteries and the pulmonary arterial and venous trees. The systemic and pulmonary circulations are treated as separate, bifurcating trees of compliant and tapering vessels. Each model is divided into two coupled parts: the larger and smaller vessels. Blood flow and pressure in the larger arteries and veins are predicted from a nonlinear 1D cross-sectional area-averaged model for a Newtonian fluid in an elastic tube. The initial cardiac output is obtained from magnetic resonance measurements. The smaller blood vessels are modelled as asymmetric structured trees with specified area and asymmetry ratios between the parent and daughter arteries. For the systemic arteries, the smaller vessels are placed into a number of separate trees representing different vascular beds corresponding to major organs and limbs. Womersley's theory gives the wave equation in the frequency domain for the 1D flow in these smaller vessels, resulting in a linear system. The impedances of the smallest vessels are set to a constant and then back-calculation gives the required outflow boundary condition for the Navier--Stokes equations in the larger vessels. The flow and pressure in the large vessels are then used to calculate the flow and pressure in the small vessels. This gives the first theoretical calculations of the pressure pulse in the small `resistance' arteries which control the haemodynamic pressure drop. I will discuss the effects, on both the forward-propagating and the reflected components of the pressure pulse waveform, of the number of generations of blood vessels, the compliance of the arterial wall, and of vascular rarefaction (the loss of small systemic arterioles) which is associated with type II diabetes. We discuss the possibilities for developing clinical indicators for the early detection of vascular disease. References: 1. M.S. Olufsen et al., Ann Biomed Eng. 28, 1281-99 (2000) 2. M.S. Olufsen, Am J Physiol. 276, H257--68 (1999)
  • Differential Equations and Applications Seminar
3 March 2011
16:00
Abstract
The mechanics of thin elastic or viscous objects has applications in e.g. the buckling of engineering structures, the spinning of polymer fibers, or the crumpling of plates and shells. During the past decade the mathematics, mechanics and physics communities have witnessed an upsurge of interest in those issues. A general question is to how patterns are formed in thin structures. In this talk I consider two illustrative problems: the shapes of an elastic knot, and the stitching patterns laid down by a viscous thread falling on a moving belt. These intriguing phenomena can be understood by using a combination of approaches, ranging from numerical to analytical, and based on exact equations or low-dimensional models.
  • Differential Equations and Applications Seminar
24 February 2011
16:00
Eddie Wilson
Abstract
"Most drivers will recognize the scenario: you are making steady progress along the motorway when suddenly you come to a sudden halt at the tail end of a lengthy queue of traffic. When you move off again you look for the cause of the jam, but there isn't one. No accident damaged cars, no breakdown, no dead animal, and no debris strewn on the road. So what caused everyone to stop?" RAC news release (2005) The (by now well-known) answer is that such "phantom traffic jams" exist as waves that propagate upstream (opposite to the driving direction) - so that the vast majority of individuals do not observe the instant at which the jam was created - yet what exactly goes on at that instant is still a matter of debate. In this talk I'll give an overview of empirical data and models to describe such spatiotemporal patterns. The key property we need is instability: and using the framework of car-following (CF) models, I'll show how different sorts of linear (convective and absolute) and nonlinear instability can be used to explain empirical patterns.
  • Differential Equations and Applications Seminar
17 February 2011
16:00
Abstract
Rubbers and biological soft tissues undergo large isochoric motions in service, and can thus be modelled as nonlinear, incompressible elastic solids. It is easy to enforce incompressibility in the finite (exact) theory of nonlinear elasticity, but not so simple in the weakly nonlinear formulation, where the stress is expanded in successive powers of the strain. In linear and second-order elasticity, incompressibility means that Poisson's ratio is 1/2. Here we show how third- and fourth-order elastic constants behave in the incompressible limit. For applications, we turn to the propagation of elastic waves in soft incompressible solids, a topic of crucial importance in medical imaging (joint work with Ray Ogden, University of Aberdeen).
  • Differential Equations and Applications Seminar
10 February 2011
16:00
Simon Cox
Abstract
Predicting the dynamics of foams requires input from geometry and both Newtonian and non-Newtonian fluid mechanics, among many other fields. I will attempt to give a flavour of this richness by discussing the static structure of a foam and how it allows the derivation of dynamic properties, at least to leading order. The latter includes coarsening due to gas diffusion, liquid drainage under gravity, and the flow of the bubbles themselves.
  • Differential Equations and Applications Seminar
27 January 2011
16:00
Radek Erban
Abstract
Several stochastic simulation algorithms (SSAs) have been recently proposed for modelling reaction-diffusion processes in cellular and molecular biology. In this talk, two commonly used SSAs will be studied. The first SSA is an on-lattice model described by the reaction-diffusion master equation. The second SSA is an off-lattice model based on the simulation of Brownian motion of individual molecules and their reactive collisions. The connections between SSAs and the deterministic models (based on reaction-diffusion PDEs) will be presented. I will consider chemical reactions both at a surface and in the bulk. I will show how the "microscopic" parameters should be chosen to achieve the correct "macroscopic" reaction rate. This choice is found to depend on which SSA is used. I will also present multiscale algorithms which use models with a different level of detail in different parts of the computational domain.
  • Differential Equations and Applications Seminar
20 January 2011
16:00
Stephen Roberts
Abstract
This talk will focus on a family of Bayesian inference algorithms built around Gaussian processes. We firstly introduce an iterative Gaussian process for multi-sensor inference problems. Extensions to our algorithm allow us to tackle some of the decision problems faced in sensor networks, including observation scheduling. Along these lines, we also propose a general method of global optimisation, Gaussian process global optimisation (GPGO). This paradigm is extended to the Bayesian decision problem of sequential multi-scale observation selection. We show how the hyperparameters of our system can be marginalised by use of Bayesian quadrature and frame the selection of the positions of the hyperparameter samples required by Bayesian quadrature as a sequential decision problem, with the aim of minimising the uncertainty we possess about the values of the integrals we are approximating.
  • Differential Equations and Applications Seminar
17 December 2010
15:00
Professor L Mahadevan
Abstract
<p>I will discuss a few problems &nbsp;that involve randomness ,&nbsp;chosen randomly &nbsp;(?) from the following&nbsp;: (i) the probability of a coin landing on a side &nbsp;(ii) optimal strategies for throwing accurately, (iii) &nbsp;the statistical mechanics of a ribbon, (iv) the intermittent dynamics of a growing polymeric assembly (v) fat tails from feedback.</p><p> </p>
  • Differential Equations and Applications Seminar

Pages