Past Geometry and Analysis Seminar

17 October 2016
Jason Lotay

Since Donaldson-Thomas proposed a programme for studying gauge theory in higher dimensions, there has
been significant interest in understanding special Yang-Mills connections in Ricci-flat 7-manifolds with holonomy
G_2 called G_2-instantons.  However, still relatively little is known about these connections, so we begin the
systematic study of G_2-instantons in the SU(2)^2-invariant setting.  We provide existence, non-existence and
classification results, and exhibit explicit sequences of G_2-instantons where “bubbling" and "removable
singularity" phenomena occur in the limit.  This is joint work with Goncalo Oliveira (Duke).


  • Geometry and Analysis Seminar
10 October 2016
Andrew Dancer

We review the concept of solitons in the Ricci flow, and describe various methods for generating examples, including some where the equations

may be solved in closed form

  • Geometry and Analysis Seminar
6 June 2016
Thomas Schick

Question: Given a smooth compact manifold $M$ without boundary, does $M$
 admit a Riemannian metric of positive scalar curvature?

 We focus on the case of spin manifolds. The spin structure, together with a
 chosen Riemannian metric, allows to construct a specific geometric
 differential operator, called Dirac operator. If the metric has positive
 scalar curvature, then 0 is not in the spectrum of this operator; this in
 turn implies that a topological invariant, the index, vanishes.

  We use a refined version, acting on sections of a bundle of modules over a
 $C^*$-algebra; and then the index takes values in the K-theory of this
 algebra. This index is the image under the Baum-Connes assembly map of a
 topological object, the K-theoretic fundamental class.

 The talk will present results of the following type:

 If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has
 non-trivial index, what conditions imply that $M$ does not admit a metric of
 positive scalar curvature? How is this related to the Baum-Connes assembly

 We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$),
 Engel and new generalizations. Moreover, we will show how these results fit
 in the context of the Baum-Connes assembly maps for the manifold and the

  • Geometry and Analysis Seminar
23 May 2016
Vasilisa Shramchenko

In 1995 N. Hitchin constructed explicit algebraic solutions to the Painlevé VI (1/8,-1/8,1/8,3/8) equation starting with any Poncelet trajectory, that is a closed billiard trajectory inscribed in a conic and circumscribed about another conic. In this talk I will show that Hitchin's construction is the Okamoto transformation between Picard's solution and the general solution of the Painlevé VI (1/8,-1/8,1/8,3/8) equation. Moreover, this Okamoto transformation can be written in terms of an Abelian differential of the third kind on the associated elliptic curve, which allows to write down solutions to the corresponding Schlesinger system in terms of this differential as well. This is a joint work with V. Dragovic.

  • Geometry and Analysis Seminar
16 May 2016
Luc Nguyen

The classical Yamabe problem asks to find in a given conformal class a metric of constant scalar curvature. In fully nonlinear analogues, the scalar curvature is replaced by certain functions of the eigenvalue of the Schouten curvature tensor. I will report on quantitative Liouville theorems and fine blow-up analysis for these problems. Joint work with Yanyan Li.

  • Geometry and Analysis Seminar
9 May 2016
Susan Sierra

We give a noncommutative analogue of Castelnuovo's classic theorem that (-1) lines on a smooth surface can be contracted, and show how this may be used to construct an explicit birational map between a noncommutative P^2 and a noncommutative quadric surface. This has applications to the classification of noncommutative projective surfaces, one of the major open problems in noncommutative algebraic geometry. We will not assume a background in noncommutative ring theory.  The talk is based on joint work with Rogalski and Staffor

  • Geometry and Analysis Seminar
2 May 2016
Michael Lennox Wong

 An "open de Rham space" refers to a moduli space of meromorphic connections on the projective line with underlying trivial bundle.  In the case where the connections have simple poles, it is well-known that these spaces exhibit hyperkähler metrics and can be realized as quiver varieties.  This story can in fact be extended to the case of higher order poles, at least in the "untwisted" case.  The "twisted" spaces, introduced by Bremer and Sage, refer to those which have normal forms diagonalizable only after passing to a ramified cover.  These spaces often arise as quotients by unipotent groups and in some low-dimensional examples one finds some well-known hyperkähler manifolds, such as the moduli of magnetic monopoles.  This is a report on ongoing work with Tamás Hausel and Dimitri Wyss.

  • Geometry and Analysis Seminar
25 April 2016

Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions, 
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian 
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in 
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.

 (Joint work with J.A. Rojo and A. Tralle).

  • Geometry and Analysis Seminar