A long-standing problem in almost complex geometry has been the question of existence of (complete) inhomogeneous nearly Kahler 6-manifolds. One of the main motivations for this question comes from $G_2$ geometry: the Riemannian cone over a nearly Kahler 6-manifold is a singular space with holonomy $G_2$.

Viewing Euclidean 7-space as the cone over the round 6-sphere, the induced nearly Kahler structure is the standard $G_2$-invariant almost complex structure on the 6-sphere induced by octonionic multiplication. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kahler metrics on the 6-sphere and also on the product of two 3-spheres. This is joint work with Lorenzo Foscolo, Stony Brook.