The theory of connections on curves and Hitchin systems is something like a “global theory of Lie groups”, where one works over a Riemann surface rather than just at a point. We’ll describe how one can take this analogy a few steps further by attempting to make precise the class of rich geometric objects that appear in this story (including the non-compact case), and discuss their classification, outlining a theory of “Dynkin diagrams” as a step towards classifying some examples of such objects.

# Past Geometry and Analysis Seminar

I shall discuss Zauner's conjecture about the existence of n^2 mutually equidistant points in complex projective space CP^{n-1} with its standard Fubini-Study metric. This is the so-called SIC-POVM problem, and is related to properties of the moment mapping that embeds CP^{n-1} into the Lie algebra su(n). In the case n=3, there is an obvious 1-parameter family of such sets of 9 points under the action of SU(3) and we shall sketch a proof that there are no others. This is joint work with Lane Hughston.

The moduli space M(G) of Higgs bundles for a complex reductive group G on a compact Riemann surface carries a natural hyperkahler structure and it comes equipped with an algebraically completely integrable system through a flat projective morphism called the Hitchin map. Motivated by mirror symmetry, I will discuss certain complex Lagrangians (BAA-branes) in M(G) coming from real forms of G and give a proposal for the mirror (BBB-brane) in the moduli space of Higgs bundles for the Langlands dual group of G. In this talk, I will focus on the real groups SU^*(2m), SO^*(4m) and Sp(m,m). The image under the Hitchin map of Higgs bundles for these groups is completely contained in the discriminant locus of the base and our analysis is carried out by describing the whole

(singular) fibres they intersect. These turn out to be certain subvarieties of the moduli space of rank 1 torsion-free sheaves on a non-reduced curve. If time permits we will also discuss another class of complex Lagrangians in M(G) which can be constructed from symplectic representations of G.

The moduli space M_C of Higgs bundles over a complex curve X admits a hyperkaehler metric: a Riemannian metric which is Kaehler with respect to three different complex structures I, J, K, satisfying the quaternionic relations. If X admits an anti-holomorphic involution, then there is an induced involution on M_C which is anti-holomorphic with respect to I and J, and holomorphic with respect to K. The fixed point set of this involution, M_R, is therefore a real

Lagrangian submanifold with respect to I and J, and complex symplectic with respect to K, making it a so called AAB-brane. In this talk, I will explain how to compute the mod 2 Betti numbers of M_R using Morse theory. A key role in this calculation is played by the Abel-Jacobi map from symmetric products of X to the Jacobian of X.

Character varieties have been studied largely by means of their correspondence to the moduli space of Higgs bundles. In this talk we will report on a method to study their Hodge structure, in particular to compute their E- polynomials. Moreover, we will explain some applications of the given method such as, the study of the topology of the moduli space of doubly periodic instantons. This is joint work with A. González, V.Muñoz and P. Newstead.

We will give an overview of the Soliton Resolution Conjecture, focusing mainly on the Wave Maps Equation. This is a program about understanding the formation of singularities for a variety of critical hyperbolic/dispersive equations, and stands as a remarkable topic of research in modern PDE theory and Mathematical Physics. We will be presenting our contributions to this field, elaborating on the required background, as well as discussing some of the latest results by various authors.

Instanton bundles were introduced by Atiyah, Drinfeld, Hitchin and Manin in the late 1970s as the holomorphic counterparts, via twistor

theory, to anti-self-dual connections (a.k.a. instantons) on the sphere S^4. We will revise some recent results regarding some of the basic

geometrical features of their moduli spaces, and on its possible degenerations. We will describe the singular loci of instanton sheaves,

and how these lead to new irreducible components of the moduli space of stable sheaves on the projective space.

Mean Curvature Flow (MCF) is a canonical way to deform sub-manifolds to minimal sub-manifolds. It also improves the geometric properties of sub-manifolds along the flow. The condition of being Lagrangian is preserved for smooth solutions of MCF in a Kahler-Einstein manifold. We call it Lagrangian mean curvature flow (LMCF) when requires slices of the flow to be Lagrangian.

Unfortunately, singularities may occur and cause obstructions to continue MCF in general. It is thus very important to understand the singularities, particularly isolated singularities of the flow. Isolated singularity models on soliton solutions that include self-similar solutions and translating solutions. In this talk, I will report some of my work with my collaborators on studying singularities of LMCF. It includes soliton solutions with different important properties and an in-progress joint project with Dominic Joyce that aims to understand how singularities form and construct examples to demonstrate these behaviours.

Twistor spaces were originally devised as a way to use techniques of complex geometry to study 4-dimensional Riemannian manifolds. In this talk I will show that they also make it possible to apply techniques from symplectic geometry. In the first part of the talk I will explain that when the 4-manifold satisfies a certain curvature inequality, its twistor space carries a natural symplectic structure. In the second part of the talk I will discuss some results in Riemannian geometry which can be proved via the symplectic geometry of the twistor space. Finally, if there is time, I will end with some speculation

about potential future applications, involving Poincaré—Einstein 4-manifolds, minimal surfaces and distinguished closed curves in their conformal infinities

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch