Past Industrial and Applied Mathematics Seminar

31 October 2013
16:00
George Haller
Abstract
We discuss a simple variational principle for coherent material vortices in two-dimensional turbulence. Vortex boundaries are sought as closed stationary curves of the averaged Lagrangian strain. We find that solutions to this problem are mathematically equivalent to photon spheres around black holes in cosmology. The fluidic photon spheres satisfy explicit differential equations whose outermost limit cycles are optimal Lagrangian vortex boundaries. As an application, we uncover super-coherent material eddies in the South Atlantic, which yield specific Lagrangian transport estimates for Agulhas rings. We also describe briefly coherent Lagrangian vortex detection to three-dimensional flows.
  • Industrial and Applied Mathematics Seminar
24 October 2013
16:00
Carl Dettman
Abstract
We consider a random geometric graph model relevant to wireless mesh networks. Nodes are placed uniformly in a domain, and pairwise connections are made independently with probability a specified function of the distance between the pair of nodes, and in a more general anisotropic model, their orientations. The probability that the network is (k-)connected is estimated as a function of density using a cluster expansion approach. This leads to an understanding of the crucial roles of local boundary effects and of the tail of the pairwise connection function, in contrast to lower density percolation phenomena.
  • Industrial and Applied Mathematics Seminar
17 October 2013
16:00
Stephen Coombes
Abstract
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localised solutions in the form of travelling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyse neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and travelling waves. We end with a discussion of amplitude equations for analysing behaviour in the vicinity of a bifurcation point (for smooth firing rates). The condition for a drift instability is derived and a center manifold reduction is used to describe a slowly moving spot in the vicinity of this bifurcation. This analysis is extended to cover the case of two slowly moving spots, and establishes that these will reflect from each other in a head-on collision.
  • Industrial and Applied Mathematics Seminar
30 May 2013
16:00
SangHoon Lee
Abstract
The study of human mobility patterns can provide important information for city planning or predicting epidemic spreading, has recently been achieved with various methods available nowadays such as tracking banknotes, airline transportation, official migration data from governments, etc. However, the dearth of data makes it much more difficult to study human mobility patterns from the past. In the present study, we show that Korean family books (called "jokbo") can be used to estimate migration patterns for the past 500 years. We apply two generative models of human mobility, which are conventional gravity-like models and radiation models, to quantify how relevant the geographical information is to human marriage records in the data. Based on the different migration distances of family names, we show the almost dichotomous distinction between "ergodic" (spread in the almost entire country) and (localized) "non-ergodic" family names, which is a characteristic of Korean family names in contrast to Czech family names. Moreover, the majority of family names are ergodic throughout the long history of Korea, suggesting that they are stable not only in terms of relative fractions but also geographically.
  • Industrial and Applied Mathematics Seminar
23 May 2013
16:00
Jim Oliver
Abstract
We investigate the effect of mass transfer on the evolution of a thin two-dimensional partially wetting drop. While the effects of viscous dissipation, capillarity, slip and uniform mass transfer are taken into account, the effects of inter alia gravity, surface tension gradients, vapour transport and heat transport are neglected in favour of mathematical tractability. Our matched asymptotic analysis reveals that the leading-order outer formulation and contact-line law that is selected in the small-slip limit depends delicately on both the sign and size of the mass transfer flux. We analyse the resulting evolution of the drop and report good agreement with numerical simulations.
  • Industrial and Applied Mathematics Seminar
16 May 2013
16:00
Abstract
Focused ion beam milling allows small scale single crystal cantilevers to be produced with cross-sectional dimensions on the order of microns which are then tested using a nanoindenter allowing both elastic and plastic materials properties to be measured. EBSD allows these cantilevers to be milled from any desired crystal orientation. Micro-cantilever bending experiments suggest that sufficiently smaller cantilevers are stronger, and the observation is believed to be related to the effect of the neutral axis on the evolution of the dislocation structure. A planar model of discrete dislocation plasticity was used to simulate end-loaded cantilevers to interpret the behaviour observed in the experiments. The model allowed correlation of the simulated dislocation structure to the experimental load displacement curve and GND density obtained from EBSD. The planar model is sufficient for identifying the roles of the neutral axis and source spacing in the observed size effect, and is particularly appropriate for comparisons to experiments conducted on crystals orientated for plane strain deformation. The effect of sample dimensions and dislocation source density are investigated and compared to small scale mechanical tests conducted on Titanium and Zirconium.
  • Industrial and Applied Mathematics Seminar
9 May 2013
16:00
Chiara Daraio
Abstract
We develop a physical understanding of how stress waves propagate in uniform, heterogeneous, ordered and disordered media composed of discrete granular particles. We exploit this understanding to create experimentally novel materials and devices at different scales, (for example, for application in energy absorption, acoustic imaging and energy harvesting). We control the constitutive behavior of the new materials selecting the particles’ geometry, their arrangement and materials properties. One-dimensional chains of particles exhibit a highly nonlinear dynamic response, allowing a completely new type of wave propagation that has opened the door to exciting fundamental physical observations (i.e., compact solitary waves, energy trapping phenomena, and acoustic rectification). This talk will focus on energy localization and redirection in one-, two- and three-dimensional systems. (For an extended abstract please contact Ruth preston@maths.ox.ac.uk).
  • Industrial and Applied Mathematics Seminar
2 May 2013
16:00
Richard Katz
Abstract
In partially molten regions of Earth, rock and magma coexist as a two-phase aggregate in which the solid grains of rock form a viscously deformable matrix. Liquid magma resides within the permeable network of pores between grains. Deviatoric stress causes the distribution of contact area between solid grains to become anisotropic; this causes anisotropy of the matrix viscosity. The anisotropic viscosity tensor couples shear and volumetric components of stress/strain rate. This coupling, acting over a gradient in shear stress, causes segregation of liquid and solid. Liquid typically migrates toward higher shear stress, but under specific conditions, the opposite can occur. Furthermore, in a two-phase aggregate with a porosity-weakening viscosity, matrix shear causes porosity perturbations to grow into a banded structure. We show that viscous anisotropy reduces the angle between these emergent high-porosity features and the shear plane. This is consistent with lab experiments.
  • Industrial and Applied Mathematics Seminar

Pages