Forthcoming events in this series


Thu, 01 Nov 2012

16:00 - 17:00
DH 1st floor SR

Bridging Scales in Molecular Motor Models: From Single to Multiple Motor Systems

Peter Kramer
(RPI)
Abstract

Recent years have seen increasing attention to the subtle effects on

intracellular transport caused when multiple molecular motors bind to

a common cargo. We develop and examine a coarse-grained model which

resolves the spatial configuration as well as the thermal fluctuations

of the molecular motors and the cargo. This intermediate model can

accept as inputs either common experimental quantities or the

effective single-motor transport characterizations obtained through

systematic analysis of detailed molecular motor models. Through

stochastic asymptotic reductions, we derive the effective transport

properties of the multiple-motor-cargo complex, and provide analytical

explanations for why a cargo bound to two molecular motors moves more

slowly at low applied forces but more rapidly at high applied forces

than a cargo bound to a single molecular motor. We also discuss how

our theoretical framework can help connect in vitro data with in vivo

behavior.

Thu, 25 Oct 2012

16:00 - 17:00
DH 1st floor SR

Large drops of a power-law fluid in a thin film on a vertical fibre

John Hinch
(Cambridge DAMTP)
Abstract

We study a thin liquid film on a vertical fibre. Without gravity, there

is a Rayleigh-Plateau instability in which surface tension reduces the

surface area of the initially cylindrical film. Spherical drops cannot

form because of the fibre, and instead, the film forms bulges of

roughly twice the initial thickness. Large bulges then grow very slowly

through a ripening mechanism. A small non-dimensional gravity moves the

bulges. They leave behind a thinner film than that in front of them, and

so grow. As they grow into large drops, they move faster and grow

faster. When gravity is stronger, the bulges grow only to finite

amplitude solitary waves, with equal film thickness behind and in front.

We study these solitary waves, and the effect of shear-thinning and

shear-thickening of the fluid. In particular, we will be interested in

solitary waves of large amplitudes, which occur near the boundary

between large and small gravity. Frustratingly, the speed is only

determined at the third term in an asymptotic expansion. The case of

Newtonian fluids requires four terms.

Thu, 18 Oct 2012

16:00 - 17:00
DH 1st floor SR

Ion transport and non-equilibrium hysteresis in bipolar membranes - by Richard Craster (joint work with O. Matar, D. Conroy from Imperial College, Chemical Engineering and L. Cheng, H-C Chang from Notre-Dame, Chemical Engineering and Microfluidics Lab)

Richard Craster
(Imperial College London)
Abstract

Some striking, and potentially useful, effects in electrokinetics occur for

bipolar membranes: applications are in medical diagnostics amongst other areas.

The purpose of this talk is to describe the experiments, the dominant features observed

and then model the phenomena: This uncovers the physics that control this process.

Time-periodic reverse voltage bias

across a bipolar membrane is shown to exhibit transient hysteresis.

This is due to the incomplete depletion of mobile ions, at the junction

between the membranes, within two adjoining polarized layers; the layer thickness depends on

the applied voltage and the surface charge densities. Experiments

show that the hysteresis consists of an Ohmic linear rise in the

total current with respect to the voltage, followed by a

decay of the current. A limiting current is established for a long

period when all the mobile ions are depleted from the polarized layer.

If the resulting high field within the two polarized layers is

sufficiently large, water dissociation occurs to produce proton and

hydroxyl travelling wave fronts which contribute to another large jump

in the current. We use numerical simulation and asymptotic analysis

to interpret the experimental results and

to estimate the amplitude of the transient hysteresis and the

water-dissociation current.

Thu, 11 Oct 2012

16:00 - 17:00
DH 1st floor SR

Mathematical sociology is not an oxymoron

Martin Everett
(University of Manchester)
Abstract

The use of formal mathematical models in sociology started in the 1940s and attracted mathematicians such as Frank Harary in the 1950s. The idea is to take the rather intuitive ideas described in social theory and express these in formal mathematical terms. Social network analysis is probably the best known of these and it is the area which has caught the imagination of a wider audience and has been the subject of a number of popular books. We shall give a brief over view of the field of social networks and will then look at three examples which have thrown up problems of interest to the mathematical community. We first look at positional analysis techniques and give a formulation that tries to capture the notion of social role by using graph coloration. We look at algebraic structures, properties, characterizations, algorithms and applications including food webs. Our second and related example looks at core-periphery structures in social networks. Our final example relates to what the network community refer to as two-mode data and a general approach to analyzing networks of this form. In all cases we shall look at the mathematics involved and discuss some open problems and areas of research that could benefit from new approaches and insights.

Thu, 14 Jun 2012

16:00 - 17:00
DH 1st floor SR

From science to data to images to science with applications to astrophysics, neuroscience and physiology

Michele Piana
(Universita' di Verona Italy)
Abstract

The computational analysis of a mathematical model describing a complex system is often based on the following roadmap: first, an experiment is conceived, in which the measured data are (either directly or indirectly) related to the input data of the model equations; second, such equations are computationally solved to provide iconographic reconstructions of the unknown physical or physiological parameters of the system; third, the reconstructed images are utilized to validate the model or to inspire appropriate improvements. This talk will adopt such framework to investigate three applied problems, respectively in solar physics, neuroscience and physiology. The solar physics problem is concerned with the exploitation of hard X-ray data for the comprehension of energy transport mechanisms in solar flares. The neuroscientific problem is the one to model visual recognition in humans with the help of a magnetocencephalography experiment. Finally, the physiological problem investigates the kinetics of the kidney-bladder system by means of nuclear data.

Thu, 07 Jun 2012

16:00 - 17:00
DH 1st floor SR

STRUCTURE AND DYNAMICS IN COMPLEX NETWORKS

Luciano da F. Costa
(Brazil University of São Paulo)
Abstract

Complex networks have been used to model almost any

real-world complex systems. An especially important

issue regards how to related their structure and dynamics,

which contributes not only for the better understanding of

such systems, but also to the prediction of important

dynamical properties from specific topological features.

In this talk I revise related research developed recently

in my group. Particularly attention is given to the concept

of accessibility, a new measurement integrating topology

and dynamics, and the relationship between frequency of

visits and node degree in directed modular complex

networks. Analytical results are provided that allow accurate

prediction of correlations between structure and dynamics

in systems underlain by directed diffusion. The methodology

is illustrated with respect to the macaque cortical network.

Thu, 31 May 2012
16:00
DH 1st floor SR

On a simplified fluid dynamic description of some renewable power plants

Ingenuin Gasser
(Universität Hamburg)
Abstract

In this seminar we discuss the gas dynamics of chimneys, solar updraft towers and energy towers. The main issue is to discuss simple fluid dynamic models which still describe the main features of the mentioned applications. We focus first on one dimensional compressible models. Then we apply a small Mach number asymptotics to reduce to complexity and to avoid the known problems

of fully compressible models in the small Mach number regime. In case of the energy tower in addition we have to model the evaporation process.

Finally we obtain a much simpler fluid dynamic model which allows robust and very fast numerical simulations. We discuss the qualitative behaviour and the good agreement with expermental data (in cases such data are available).

Thu, 24 May 2012

16:00 - 17:00
DH 1st floor SR

Bubble instabilities in rigid and flexible vessels

Anne Juel
(Manchester)
Abstract

The displacement of a liquid by an air finger is a generic two-phase flow that

underpins applications as diverse as microfluidics, thin-film coating, enhanced

oil recovery, and biomechanics of the lungs. I will present two intriguing

examples of such flows where, firstly, oscillations in the shape of propagating

bubbles are induced by a simple change in tube geometry, and secondly, flexible

vessel boundaries suppress viscous fingering instability.

1) A simple change in pore geometry can radically alter the behaviour of a

fluid displacing air finger, indicating that models based on idealized pore

geometries fail to capture key features of complex practical flows. In

particular, partial occlusion of a rectangular cross-section can force a

transition from a steadily-propagating centred finger to a state that exhibits

spatial oscillations via periodic sideways motion of the interface at a fixed

location behind the finger tip. We characterize the dynamics of the

oscillations and show that they arise from a global homoclinic connection

between the stable and unstable manifolds of a steady, symmetry-broken

solution.

2) Growth of complex dendritic fingers at the interface of air and a viscous

fluid in the narrow gap between two parallel plates is an archetypical problem

of pattern formation. We find a surprisingly effective means of suppressing

this instability by replacing one of the plates with an elastic membrane. The

resulting fluid-structure interaction fundamentally alters the interfacial

patterns that develop and considerably delays the onset of fingering. We

analyse the dependence of the instability on the parameters of the system and

present scaling arguments to explain the experimentally observed behaviour.

Thu, 17 May 2012

16:00 - 17:00
DH 1st floor SR

A Unifying Framework for Information Theoretic Feature Selection

Gavin Brown
(Manchester)
Abstract

Feature Selection is a ubiquitous problem in across data mining,

bioinformatics, and pattern recognition, known variously as variable

selection, dimensionality reduction, and others. Methods based on

information theory have tremendously popular over the past decade, with

dozens of 'novel' algorithms, and hundreds of applications published in

domains across the spectrum of science/engineering. In this work, we

asked the question 'what are the implicit underlying statistical

assumptions of feature selection methods based on mutual information?'

The main result I will present is a unifying probabilistic framework for

information theoretic feature selection, bringing almost two decades of

research on heuristic methods under a single theoretical interpretation.

Thu, 10 May 2012

16:00 - 17:00
DH 1st floor SR

Hollow Vortices

Stefan Llewellyn Smith
(San Diego)
Abstract

Hollow vortices are vortices whose interior is at rest. They posses vortex sheets on their boundaries and can be viewed as a desingularization of point vortices. We give a brief history of point vortices. We then obtain exact solutions for hollow vortices in linear and nonlinear strain and examine the properties of streets of hollow vortices. The former can be viewed as a canonical example of a hollow vortex in an arbitrary flow, and its stability properties depend. In the latter case, we reexamine the hollow vortex street of Baker, Saffman and Sheffield and examine its stability to arbitrary disturbances, and then investigate the double hollow vortex street. Implications and extensions of this work are discussed.

Thu, 03 May 2012

16:00 - 17:00
DH 1st floor SR

Free surface flow of nematic liquid crystal: spreading and instability

Linda Cummings
(New Jersey Institute of Technology Newark)
Abstract

Nematic liquid crystals (NLCs) are materials that flow like liquids, but have some crystalline features. Their molecules are typically long and thin, and tend to align locally, which imparts some elastic character to the NLC. Moreover at interfaces between the NLC and some other material (such as a rigid silicon substrate, or air) the molecules tend to have a preferred direction (so-called "surface anchoring"). This preferred behaviour at interfaces, coupled with the internal "elasticity", can give rise to complex instabilities in spreading free surface films. This talk will discuss modelling approaches to describe such flows. The models presented are capable of capturing many of the key features observed experimentally, including arrested spreading (with or without instability). Both 2D and 3D spreading scenarios will be considered, and simple ways to model nontrivial surface anchoring patterns, and "defects" within the flows will also be discussed.

Thu, 26 Apr 2012

16:00 - 17:00
L1

Synchronization, Control and Coordination of Complex Networks via Contraction Theory

Mario di Bernardo
(Bristol University)
Abstract

In a variety of problems in engineering and applied science, the goal is to design or control a network of dynamical agents so as to achieve some desired asymptotic behaviour. Examples include consensus and rendez-vous problems in robotics, synchronization of generator angles in power grids or coordination of oscillations in bacterial populations. A pressing challenge in all of these problems is to derive appropriate analytical tools to prove convergence towards the target behaviour. Such tools are not only invaluable to guarantee the desired performance, but can also provide important guidelines for the design of decentralized control strategies to steer the collective behaviour of the network of interest in a desired manner. During this talk, a methodology for analysis and design of convergence in networks will be presented which is based on the use of a classical, yet not fully exploited, tool for convergence analysis: contraction theory. As opposed to classical methods for stability analysis, the idea is to look at convergence between trajectories of a system of interest rather that at their asymptotic convergence towards some solution of interest. After introducing the problem, a methodology will be derived based on the use of matrix measures induced by non-Euclidean norms that will be exploited to design strategies to control the collective behaviour of networks of dynamical agents. Representative examples will be used to illustrate the theoretical results.

Fri, 13 Apr 2012

15:00 - 16:00
DH 1st floor SR

TALK 2 -- Community detection: TITLE: Networks, Communities and the Ground-Truth - COFFEE AND CAKE DH Common Room

SPECIAL EVENT OCIAM joint with The Oxford Internet Institute Jure Leskovec
Abstract

TALK 1 -- social media for OII:

TITLE: Computational Perspectives on the Structure and Information

Flows in On-Line Networks

ABSTRACT:

With an increasing amount of social interaction taking place in on-line settings, we are accumulating massive amounts of data about phenomena that were once essentially invisible to us: the collective behavior and social interactions of hundreds of millions of people Analyzing this massive data computationally offers enormous potential both to address long-standing scientific questions, and also to harness and inform the design of future social computing applications: What are emerging ideas and trends? How is information being created, how it flows and mutates as it is passed from a node to node like an epidemic?

We discuss how computational perspective can be applied to questions involving structure of online networks and the dynamics of information flows through such networks, including analysis of massive data as well as mathematical models that seek to abstract some of the underlying phenomena.

TALK 2 -- Community detection:

TITLE: Networks, Communities and the Ground-Truth

ABSTRACT: Nodes in complex networks organize into communities of nodes that share a common property, role or function, such as social communities, functionally related proteins, or topically related webpages. Identifying such communities is crucial to the understanding of the structural and functional roles of networks.Current work on overlapping community detection (often implicitly) assumes that community overlaps are less densely connected than non-overlapping parts of communities. This is unnatural as it means that the more communities nodes share, the less likely it is they are linked. We validate this assumption on a diverse set of large networks and find an increasing relationship between the number of shared communities of a pair of nodes and the probability of them being connected by an edge, which means that parts of the network where communities overlap tend to be more densely connected than the non-overlapping parts of communities. Existing community detection methods fail to detect communities with such overlaps. We propose a model-based community detection method that builds on bipartite node-community affiliation networks. Our method successfully detects overlapping, non-overlapping and hierarchically nested communities. We accurately identify relevant communities in networks ranging from biological protein-protein interaction networks to social, collaboration and information networks. Our results show that while networks organize into overlapping communities, globally networks also exhibit a nested core-periphery structure, which arises as a consequence of overlapping parts of communities being more densely connected.

Thu, 01 Mar 2012

16:00 - 17:00
DH 1st floor SR

Breakup of Spiralling Liquid Jets

Jamal Uddin
(Birmingham)
Abstract

The industrial prilling process is amongst the most favourite technique employed in generating monodisperse droplets. In such a process long curved jets are generated from a rotating drum which in turn breakup and from droplets. In this talk we describe the experimental set-up and the theory to model this process. We will consider the effects of changing the rheology of the fluid as well as the addition of surface agents to modify breakup characterstics. Both temporal and spatial instability will be considered as well as nonlinear numerical simulations with comparisons between experiments.

Thu, 23 Feb 2012

16:00 - 17:00
DH 1st floor SR

The Determination of an Obstacle from its Scattering Cross Section

Brian Sleeman
(Leeds University)
Abstract

The inverse acoustic obstacle scattering problem, in its most general

form, seeks to determine the nature of an unknown scatterer from knowl-

edge of its far eld or radiation pattern. The problem which is the main

concern here is:

If the scattering cross section, i.e the absolute value of the radiation

pattern, of an unknown scatterer is known determine its shape.

In this talk we explore the problem from a number of points of view.

These include questions of uniqueness, methods of solution including it-

erative methods, the Minkowski problem and level set methods. We con-

clude by looking at the problem of acoustically invisible gateways and its

connections with cloaking

Thu, 16 Feb 2012

16:00 - 17:00
DH 1st floor SR

Adaptive Networks of Opinion Formation in Humans and Animals

Thilo Gross
(University of Bristol)
Abstract

A central challenge in socio-physics is understanding how groups of self-interested agents make collective decisions. For humans many insights in the underlying opinion formation process have been gained from network models, which represent agents as nodes and social contacts as links. Over the past decade these models have been expanded

to include the feedback of the opinions held by agents on the structure of the network. While a verification of these adaptive models in humans is still difficult, evidence is now starting to appear in opinion formation experiments with animals, where the choice that is being made concerns the direction of movement. In this talk I show how analytical insights can be gained from adaptive networks models and how predictions from these models can be verified in experiments with swarming animals. The results of this work point to a similarity between swarming and human opinion formation and reveal insights in the dynamics of the opinion formation process. In particular I show that in a population that is under control of a strongly opinionated minority a democratic consensus can be restored by the addition of

uninformed individuals.

Thu, 09 Feb 2012

16:00 - 17:00
DH 1st floor SR

Shapes formed by Interacting Cracks

Karen Daniels
(North Carolina State University)
Abstract

Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed "en passant" crack pattern by fracturing a rectangular slab which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

Thu, 02 Feb 2012

16:00 - 17:00
DH 1st floor SR

On advancing contact lines with a 180-degree contact angle

Eugene Benilov
(Limerick)
Abstract

This work builds on the foundation laid by Benney & Timson (1980), who

examined the flow near a contact line and showed that, if the contact

angle is 180 degrees, the usual contact-line singularity does not arise.

Their local analysis, however, does not allow one to determine the

velocity of the contact line and their expression for the shape of the

free boundary involves undetermined constants - for which they have been

severely criticised by Ngan & Dussan V. (1984). As a result, the ideas

of Benny & Timson (1980) have been largely forgotten.

The present work shows that the criticism of Ngan & Dussan V. (1984)

was, in fact, unjust. We consider a two-dimensional steady Couette flow

with a free boundary, for which the local analysis of Benney & Timson

(1980) can be complemented by an analysis of the global flow (provided

the slope of the free boundary is small, so the lubrication

approximation can be used). We show that the undetermined constants in

the solution of Benney & Timson (1980) can all be fixed by matching

their local solution to the global one. The latter also determines the

contact line's velocity, which we compute among other characteristics of

the global flow.

Thu, 26 Jan 2012

16:00 - 17:00
DH 1st floor SR

Modelling the Transition from Channel-Veins to PSBs in the Early Stage of Fatigue Tests

Yichao Zhu
(Oxford)
Abstract

Understanding the fatigue of metals under cyclic loads is crucial for some fields in mechanical engineering, such as the design of wheels of high speed trains and aero-plane engines. Experimentally it has been found that metal fatigue induced by cyclic loads is closely related to a ladder shape pattern of dislocations known as a persistent slip band (PSB). In this talk, a quantitative description for the formation of PSBs is proposed from two angles: 1. the motion of a single dislocation analised by using asymptotic expansions and numerical simulations; 2. the collective behaviour of a large number of dislocations analised by using a method of multiple scales.

Thu, 19 Jan 2012

16:00 - 17:00
DH 1st floor SR

Inverse problems, wavelets, and linear viscoelasticity

Russell Davies
(Cardiff)
Abstract

It is an inherent premise in Boltzmann's formulation of linear viscoelasticity, that for shear deformations at constant pressure and constant temperature, every material has a unique continuous relaxation spectrum. This spectrum defines the memory kernel of the material. Only a few models for representing the continuous spectrum have been proposed, and these are entirely empirical in nature.

Extensive laboratory time is spent worldwide in collecting dynamic data from which the relaxation spectra of different materials may be inferred. In general the process involves the solution of one or more exponentially ill-posed inverse problems.

In this talk I shall present rigorous models for the continuous relaxation spectrum. These arise naturally from the theory of continuous wavelet transforms. In solving the inverse problem I shall discuss the role of sparsity as one means of regularization, but there is also a secondary regularization parameter which is linked, as always, to resolution. The topic of model-induced super-resolution is discussed, and I shall give numerical results for both synthetic and real experimental data.

The talk is based on joint work with Neil Goulding (Cardiff University).

Thu, 01 Dec 2011

16:00 - 17:00
L2

Tsunami asymptotics

Michael Berry
(Bristol University Physics Department)
Abstract

Tsunami asymptotics: For most of their propagation, tsunamis are linear dispersive waves whose speed is limited by the depth of the ocean and which can be regarded as diffraction-decorated caustics in spacetime. For constant depth, uniform asymptotics gives a very accurate compact description of the tsunami profile generated by an arbitrary initial disturbance. Variations in depth can focus tsunamis onto cusped caustics, and this 'singularity on a singularity' constitutes an unusual diffraction problem, whose solution indicates that focusing can amplify the tsunami energy by an order of magnitude.

Thu, 24 Nov 2011

16:00 - 17:00
DH 1st floor SR

Coupled problem of dam-break flow

Alexander Korobkin
(UEA)
Abstract

Initial stage of the flow with a free surface generated by a vertical

wall moving from a liquid of finite depth in a gravitational field is

studied. The liquid is inviscid and incompressible, and its flow is

irrotational. Initially the liquid is at rest. The wall starts to move

from the liquid with a constant acceleration.

It is shown that, if the acceleration of the plate is small, then the

liquid free surface separates from the wall only along an

exponentially small interval. The interval on the wall, along which

the free surface instantly separates for moderate acceleration of the

wall, is determined by using the condition that the displacements of

liquid particles are finite. During the initial stage the original

problem of hydrodynamics is reduced to a mixed boundary-value problem

with respect to the velocity field with unknown in advance position of

the separation point. The solution of this

problem is derived in terms of complete elliptic integrals. The

initial shape of the separated free surface is calculated and compared

with that predicted by the small-time solution of the dam break

problem. It is shown that the free surface at the separation point is

orthogonal to the moving plate.

Initial acceleration of a dam, which is suddenly released, is calculated.