Past Industrial and Interdisciplinary Workshops

19 October 2018
10:00
Brent Peterson
Abstract

At first glance the Interdistrict shipping problem resembles a transportation problem.  N sources with M destinations with k Stock keeping units (SKU’s); however, we want to solve for the optimal shipping frequency between each node while determining the flow of each SKU across the network.  As the replenishment quantity goes up, the shipping frequency goes down and the inventory holding cost goes up (AWI = Replenishment Qty/2 + SS).  Safety stock also increases as frequency decreases.  The relationship between replenishment quantity and shipping frequency is non-linear (frequency = annual demand/replenishment qty).  The trucks which are used to transfer the product have finite capacity and the cost to drive the truck between 2 locations is constant regardless of how many containers are actually on the truck up to the max capacity.  Each product can have a different footprint of truck capacity.  Cross docking is allowed.  (i.e. a truck may travel from Loc A to loc B carrying products X and Y.  At loc B, the truck unloads product X, picks up product Z, and continues to location C.  The key here is that product Y does not incur any handling costs at Loc B while products X and Z do.)

The objective function seeks to minimize the total costs ( distribution + handling + inventory holding costs)  for all locations, for all SKU’s, while determining how much of each product should flow across each arc such that all demand is satisfied.

  • Industrial and Interdisciplinary Workshops
9 March 2018
10:00
Hannah Rose
Abstract

An important and relevant topic at Thales is 1-3 composite modelling capability. In particular, sensitivity enhancement through design.

A simplistic model developed by Smith and Auld1 has grouped the polycrystalline active and filler materials into an effective homogenous medium by using the rule of weighted averages in order to generate “effective” elastic, electric and piezoelectric properties. This method had been further improved by Avellaneda & Swart2. However, these models fail to provide all of the terms necessary to populate a full elasto-electric matrix – such that the remaining terms need to be estimated by some heuristic approach. The derivation of an approach which allowed all of the terms in the elasto-electric matrix to be calculated would allow much more thorough and powerful predictions – for example allowing lateral modes etc. to be traced and allow a more detailed design of a closely-packed array of 1-3 sensors to be conducted with much higher confidence, accounting for inter-elements coupling which partly governs the key field-of-view of the overall array. In addition, the ability to populate the matrix for single crystal material – which features more independent terms in the elasto-electric matrix than conventional polycrystalline material- would complement the increasing interest in single crystals for practical SONAR devices.

1.“Modelling 1-3 Composite Piezoelectrics: Hydrostatic Response” – IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 40(1):41-

2.“Calculating the performance of 1-3 piezoelectric composites for hydrophone applications: An effective medium approach” The Journal of the Acoustical Society of America 103, 1449, 1998

  • Industrial and Interdisciplinary Workshops