Past Junior Applied Mathematics Seminar

6 March 2012
13:30
Emma Warneford
Abstract

Large-scale zonal jets are observed in a wide range of geophysical and astrophysical flows; most strikingly in the atmospheres of the Jovian gas giant planets. Jupiter's upper atmosphere is highly turbulent, with many small vortices, and strong westerly winds at the equator. We consider the thermal shallow water equations as a model for Jupiter's upper atmosphere. Originally proposed for the terrestrial atmosphere and tropical oceans, this model extends the conventional shallow water equations by allowing horizontal temperature variations with a modified Newtonian cooling for the temperature field. We perform numerical simulations that reproduce many of the key features of Jupiter’s upper atmosphere. However, the simulations take a long time to run because their time step is severely constrained by the inertia-gravity wave speed. We filter out the inertia-gravity waves by forming the quasigeostrophic limit, which describes the rapidly rotating (small Rossby number) regime. We also show that the quasigeostrophic energy equation is the quasigeostrophic limit of the thermal shallow water pseudo-energy equation, analogous to the derivation of the acoustic energy equation from gas dynamics. We perform numerical simulations of the quasigeostrophic equations, which again reproduce many of the key features of Jupiter’s upper atmosphere. We gain substantial performance increases by running these simulations on graphical processing units (GPUs).

  • Junior Applied Mathematics Seminar
21 February 2012
13:30
Martin Gould
Abstract

 Determining the price at which to conduct a trade is an age-old problem. The first (albeit primitive) pricing mechanism dates back to the Neolithic era, when people met in physical proximity in order to agree upon mutually beneficial exchanges of goods and services, and over time increasingly complex mechanisms have played a role in determining prices. In the highly competitive and relentlessly fast-paced markets of today’s financial world, it is the limit order book that matches buyers and sellers to trade at an agreed price in more than half of the world’s markets.  In this talk I will describe the limit order book trade-matching mechanism, and explain how the extra flexibility it provides has vastly impacted the problem of how a market participant should optimally behave in a given set of circumstances.

  • Junior Applied Mathematics Seminar
7 February 2012
13:30
Mark Curtis
Abstract

 When modelling the motion of a sperm cell in the female reproductive tract, the Reynolds number is found to be very small, thus allowing the nonlinear Navier-Stokes equations to simplify to the linear Stokes equations stating that pressure, viscous and body forces balance each other at any instant in time. A wide range of analytical techniques can be applied to investigate the Stokes flow past a moving body. In this talk, we introduce various Stokes flow singularities and illustrate how they can provide a handy starting point (ansatz) when trying to determine the form of the flow field around certain bodies, from simple translating spheres to beating sperm tails.

  • Junior Applied Mathematics Seminar
24 January 2012
13:30
Georgios Anastasiades
Abstract

Quantile forecasting of wind power using variability indices
Abstract: Wind power forecasting techniques have received substantial attention recently due to the increasing penetration of wind energy in national power systems.  While the initial focus has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. Using four years of wind power data from three wind farms in Denmark, we develop quantile regression models to generate short-term probabilistic forecasts from 15 minutes up to six hours ahead. More specifically, we investigate the potential of using various variability indices as explanatory variables in order to include the influence of changing weather regimes. These indices are extracted from the same  wind power series and optimized specifically for each quantile. The forecasting performance of this approach is compared with that of some benchmark models. Our results demonstrate that variability indices can increase the overall skill of the forecasts and that the level of improvement depends on the specific quantile.

  • Junior Applied Mathematics Seminar
29 November 2011
13:15
Abstract

Turbidity currents are fast-moving streams of sediment in the ocean 
which have the power to erode the sea floor and damage man-made
infrastructure anchored to the bed. They can travel for hundreds of
kilometres from the continental shelf to the deep ocean, but they are
unpredictable and can occur randomly without much warning making them
hard to observe and measure. Our main aim is to determine the distance
downstream at which the current will become extinct. We consider the
fluid model of Parker et al. [1986] and derive a simple shallow-water
description of the current which we examine numerically and analytically
to identify supercritical and subcritical flow regimes. We then focus on
the solution of the complete model and provide a new description of the
turbulent kinetic energy. This extension of the model involves switching
from a turbulent to laminar flow regime and provides an improved
description of the extinction process. 

  • Junior Applied Mathematics Seminar
18 November 2011
15:30
Abstract

 A common way to replace body tissue is via donors, but as the world population is ageing at an unprecedented rate there will be an even smaller supply to demand ratio for replacement parts than currently exists. Tissue engineering is a process in which damaged body tissue is repaired or replaced via the engineering of artificial tissues. We consider one type of this; a two-phase flow through a rotating high-aspect ratio vessel (HARV) bioreactor that contains a porous tissue construct. We extend the work of Cummings and Waters [2007], who considered a solid tissue construct, by considering flow through the porous construct described by a rotating form of Darcy's equations. By simplifying the equations and changing to bipolar variables, we can produce analytic results for the fluid flow through the system for a given construct trajectory. It is possible to calculate the trajectory numerically and couple this with the fluid flow to produce a full description of the flow behaviour. Finally, coupling with the numerical result for the tissue trajectory, we can also analytically calculate the particle paths for the flow which will lead to being able to calculate the spatial and temporal nutrient density.

  • Junior Applied Mathematics Seminar
1 November 2011
13:15
Abstract
Cell motility is a crucial part of many biological processes including wound healing, immunity and embryonic development. The interplay between mechanical forces and biochemical control mechanisms make understanding cell motility a rich and exciting challenge for mathematical modelling. We consider the two-phase, poroviscous, reactive flow framework used in the literature to describe crawling cells and present a stripped down version. Linear stability analysis and numerical simulations provide insight into the onset of polarization of a stationary cell and reveal qualitatively distinct families of travelling wave solutions. The numerical solutions also capture the experimentally observed behaviour that cells crawl fastest when the surface they crawl over is neither too sticky nor too slippy.
  • Junior Applied Mathematics Seminar
18 October 2011
13:15
Abstract

Motivated by the study of micro-vascular disease, we have been investigating the relationship between the structure of capillary networks and the resulting blood perfusion through the muscular walls of the heart. In order to derive equations describing effective fluid transport, we employ an averaging technique called homogenisation, based on a separation of length scales. We find that the tissue-scale flow is governed by Darcy's Law, whose coefficients we are able to explicitly calculate by averaging the solution of the microscopic capillary-scale equations. By sampling from available data acquired via high-resolution imaging of the coronary capillaries, we automatically construct physiologically-realistic vessel networks on which we then numerically solve our capillary-scale equations. By validating against the explicit solution of Poiseuille flow in a discrete network of vessels, we show that our homogenisation method is indeed able to efficiently capture the averaged flow properties.

  • Junior Applied Mathematics Seminar
21 June 2011
13:15
Abstract

Bacteria are ubiquitous on Earth and perform many vital roles in addition to being responsible for a variety of diseases. Locomotion allows the bacterium to explore the environment to find nutrient-rich locations and is also crucial in the formation of large colonies, known as biofilms, on solid surfaces immersed in the fluid. Many bacteria swim by turning corkscrew-shaped flagella. This can be studied computationally by considering hydrodynamic forces acting on the bacterium as the flagellum rotates. Using a boundary element method to solve the Stokes flow equations, it is found that details of the shape of the cell and flagellum affect both swimming efficiency and attraction of the swimmer towards flat no-slip surfaces. For example, simulations show that relatively small changes in cell elongation or flagellum length could make the difference between an affinity for swimming near surfaces and a repulsion. A new model is introduced for considering elastic behaviour in the bacterial hook that links the flagellum to the motor in the cell body. This model, based on Kirchhoff rod theory, predicts upper and lower bounds on the hook stiffness for effective swimming.

  • Junior Applied Mathematics Seminar
7 June 2011
13:15
Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterised by a high proviral load and risk of developing ATL, an aggressive blood cancer, or HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, chronically activated HTLV-I-specific CTL response, yet the virus has developed complex mechanisms to evade host immunity and avoid viral clearance. Moreover, identification of determinants to the development of disease has thus far been elusive.

 This model is based on a recent experimental hypothesis for the persistence of HTLV-I infection and is a direct extension of the model studied by Li and Lim (2011). A four-dimensional system of ordinary differential equations is constructed that describes the dynamic interactions among viral expression, infected target cell activation, and the human immune response. Focussing on the particular roles of viral expression and host immunity in chronic HTLV-I infection offers important insights to viral persistence and pathogenesis.

  • Junior Applied Mathematics Seminar

Pages