Forthcoming events in this series


Thu, 05 Nov 2009

12:00 - 13:00
SR1

Compactifying Spec $\mathbb{Z}$

Peter Arndt
(Göttingen / Cambridge)
Abstract

The spectrum of the integers is an affine scheme which number theorists would like to complete to a projective scheme, adding a point at infinity. We will list some reasons for wanting to do this, then gather some hints about what properties the completed object might have. In particular it seems that the desired object can only exist in some setting extending traditional algebraic geometry. We will then present the proposals of Durov and Shai Haran for such extended settings and the compactifications they construct. We will explain the close relationship between both and, if time remains, relate them to a third compactification in a third setting, proposed by Toen and Vaquie.

Thu, 29 Oct 2009

12:00 - 13:00
SR1

The problem of the homotopy invariance of configuration spaces

George Raptis
(Oxford)
Abstract

The talk is about the homotopy type of configuration spaces. Once upon a time there was a conjecture that it is a homotopy invariant of closed manifolds. I will discuss the strong evidence supporting this claim, together with its recent disproof by a counterexample. Then I will talk about the corrected version of the original conjecture.

Thu, 22 Oct 2009

12:00 - 13:00
SR1

Degenerations of <2>-polarised K3 surfaces

Alan Thompson
(Oxford)
Abstract

A -polarised K3 surface admits an embedding into weighted projective space defined by its polarisation. Let X be a family of such surfaces, then one can construct a projective model W of X such that the map from X to W realises this embedding on the general fibre. This talk considers what happens to W when we allow the fibres of the family X to degenerate.

Thu, 25 Jun 2009

12:00 - 13:00
L3

Perfect obstruction theories and virtual fundamental classes

Ben Davison
(Oxford)
Abstract

I will explain what a perfect obstruction theory is, and how it gives rise to a "virtual" fundamental class of the right expected dimension, even when the dimension of the moduli space is wrong. These virtual fundamental classes are one of the main preoccupations of "modern" moduli theory, being the central object of study in Gromov-Witten and Donaldson-Thomas theory. The purpose of the talk is to remove the black-box status of these objects. If there is time I will do some cheer-leading for dg-schemes, and try to convince the audience that virtual fundamental classes are most happily defined to live in the dg-world.

Thu, 18 Jun 2009

12:15 - 13:15
SR1

The AJ conjecture from a gauge-theoretical viewpoint

Magnus Lauridsen
(Aarhus)
Abstract
The AJ conjecture relates two different knot invariants, namely the coloured Jones polynomial and the A-polynomial. The approach we will use will be that of 2+1 dimensional Topological Quantum Field Theory. Indeed, the coloured Jones polynomial is constructed in Reshetikhin and Turaev's formulation of a TQFT using quantum groups. The A-polynomial is defined by a subvariety of the moduli space of flat SL(2,C) connections of a torus.  Geometric quantization on this moduli space also gives a TQFT, and the correspondence between these provides a framework where the knot invariants can be compared. In the talk I will sketch the above constructions and show how we can do explicit calculations for simple knots. This is work in progress joint with J. E. Andersen.
Thu, 11 Jun 2009

12:15 - 13:15
SR1

Grothendieck's Brauer group and the Manin obstruction

Frank Gounelas
(Oxford)
Abstract
In this talk I will outline the two constructions of the Brauer group Br($X$) of a scheme $X$, namely via etale cohomology and Azumaya algebras and briefly describe how one may compute this group using the Hochschild-Serre spectral sequence. In the early '70s Manin observed that one can use the Brauer group of a projective variety $X/k$ to define an obstruction to the existence of rational points on $X$. I will discuss this arithmetic application and time permitting, outline an example for $X$ a K3 surface.
Thu, 21 May 2009

12:15 - 13:15
SR1

Universal moduli of parabolic bundles on stable curves

Dirk Schlueter
(Oxford)
Abstract

A parabolic bundle on a marked curve is a vector bundle with extra structure (a flag) in each of the fibres over the marked points, together with data corresponding to a choice of stability condition Parabolic bundles are natural generalisations of vector bundles when the base comes with a marking (for example, they partially generalise the Narasimhan-Seshadri correspondence between representations of the fundamental group and semistable vector bundles), but they also play an important role in the study of pure sheaves on nodal curves (which are needed to compactify moduli of vector bundles on stable curves). Consider the following moduli problem: pairs $(C,E)$ of smooth marked curves $C$

and semistable parabolic bundles $E\rightarrow C$. I will sketch a construction of projective moduli spaces which compactify the above moduli problem over the space of stable curves. I'll discuss further questions of interest, including strategies for understanding the cohomology of these moduli spaces, generalisations of the construction to higher-dimensional base schemes, and possible connections with Torelli theorems for parabolic vector bundles on marked curves.

Thu, 14 May 2009

12:15 - 13:15
SR1

Hitchin's connection, Toeplitz operators, and deformation quantization

Niels Gammelgaard
(Aarhus)
Abstract

I will briefly describe a differential geometric construction of Hitchin's projectively flat connection in the Verlinde bundle, over Teichm\"uller space, formed by the Hilbert spaces arising from geometric quantization of the moduli space of flat connections on a Riemann surface. We will work on a general symplectic manifold sharing certain properties with the moduli space. Toeplitz operators enter the picture when quantizing classical observables, but they are also closely connected with the notion of deformation quantization. Furthermore, through an intimate relationship between Toeplitz operators, the Hitchin connection manifests itself in the world of deformation quantization as a connection on formal functions. As we shall see, this formal Hitchin connection can be used to construct a deformation quantization, which is independent of the Kähler polarization used for quantization. In the presence of a symmetry group, this deformation quantization can (under certain cohomological conditions) be constructed invariantly. The talk presents joint work with J. E. Andersen.

Thu, 30 Apr 2009

12:00 - 13:00
SR1

Spaces of surfaces and Mumford's conjecture

Oscar Randal-Williams
(Oxford)
Abstract

I will present a new proof of Mumford's conjecture on the rational cohomology of moduli spaces of curves, which is substantially different from those given by Madsen--Weiss and Galatius--Madsen--Tillmann--Weiss: in particular, it makes no use of Harer--Ivanov stability for the homology of mapping class groups, which played a decisive role in the previously known proofs. This talk represents joint work with Soren Galatius.

Thu, 12 Mar 2009

12:00 - 13:00
SR1

Counting invariants and wall crossing

Ben Davison
(Oxford)
Abstract

This talk concerns the relationships between Donaldson-Thomas, Pandharipande-Thomas, and Szendroi invariants established via analysis of the geometry of wall crossing phenomena of suitably general moduli spaces. I aim to give a reasonably detailed account of the simplest example, the conifold, where in fact all of the major ideas can be easily seen.

Thu, 19 Feb 2009

12:00 - 13:00
SR1

The moduli space of vector bundles on a Riemann surface

Dirk Schlueter
(Oxford)
Abstract

I will briefly discuss the construction of the moduli spaces of (semi)stable bundles on a given curve. The main aim of the talk will be to describe various features of the geometry and topology of these moduli spaces, with emphasis on methods as much as on results. Topics may include irreducibility, cohomology, Verlinde numbers, Torelli theorems.

Thu, 05 Feb 2009

12:00 - 13:00
SR1

On uniqueness of stationary black holes

João Lopes Costa
(Oxford)
Abstract

We prove uniqueness of the Kerr black holes within the connected, non-degenerate, analytic class of regular vacuum black holes. (This is joint work with Piotr Chrusciel. arXiv:0806.0016)

Thu, 04 Dec 2008

12:00 - 13:00
SR1

Hermitian G-Higgs bundles exceptionally flavoured

Roberto Rubio
(ICMAT Spain)
Abstract

We introduce the notion of $G$-Higgs bundle from studying the representations of the fundamental group of a closed connected oriented surface $X$ in a Lie group $G$. If $G$ turns to be the isometry group of a Hermitian symmetric space, much more can be said about the moduli space of $G$-Higgs bundles, but this also implies dealing with exceptional cases. We will try to face all these subjects intuitively and historically, when possible!

Thu, 27 Nov 2008

12:00 - 13:00
SR1

Introduction to Deformation Theory

Martijn Kool
(Oxford)
Abstract

In this talk I will discuss some elementary notions of deformation theory in algebraic geometry like Schlessinger's Criterion. I will describe obstructions and deformations of sheaves in detail and will point out relations to moduli spaces of sheaves.

Thu, 20 Nov 2008

12:00 - 13:00
SR1

The construction of ample <2>-polarised K3-fibrations

Alan Thompson
(Oxford)
Abstract

Fibrations are a valuable tool in the study of the geometry of higher dimensional algebraic varieties. By expressing a higher dimensional variety as a fibration by lower dimensional varieties, we can deduce much about its properties. Whilst the theory of elliptic fibrations is very well developed, fibrations by higher dimensional varieties, especially K3 surfaces, are only just beginning to be studied. In this talk I study a special case of the K3-fibration, where the general fibres admit a &lt;2&gt;-polarisation and the base of the fibration is a nonsingular curve.