In this talk I will discuss the notion of o-minimality, which can be approached from either a model-theoretic standpoint, or an algebraic one. I will exhibit some o-minimal structures, focussing on those most relevant to number theorists, and attempt to explain how o-minimality can be used to attain an assortment of results.

# Past Junior Number Theory Seminar

In this talk I will describe Arthur's classification of automorphic representations of symplectic and orthogonal groups using automorphic representations of $\mathrm{GL}_N$.

We will discuss Raynaud's classical theory on Néron models of Jacobians of curves, and mention some tropical aspects of the theory that help us understand modular curves from a modern non-Archimedean viewpoint. There will be an annoyingly large number of examples illustrating the key principles throughout.

Cramer conjectured a random model for the distribution of the primes, which would suggest that, on the scale of the average prime gap, the primes can be modelled by a Poisson process. In particular, the set of limit points of normalized prime gaps would be the whole interval $[0,\infty)$. I will describe joint work with Banks and Freiberg which shows that at least 1/8 of the positive reals are in the set of limit points.

Consider a nonsingular projective variety $X$ defined by a system of $R$ forms of the same degree $d$. The circle method proves the Hasse principle and Manin's conjecture for $X$ when $\text{dim}X > C(d,R)$. I will describe how to improve the value of $C$ when $R$ is large. I use a technique for estimating mean values of exponential sums which I call a ``moat lemma". This leads to a novel and intriguing system of auxiliary inequalities.