Forthcoming events in this series


Mon, 23 Nov 2015

16:00 - 17:00
C2

Reduction Types of Abelian Varieties

Alexander Betts
(Oxford)
Abstract

Much of the arithmetic behaviour of an elliptic curve can be understood by examining its mod p reduction at some prime p. In this talk, we will aim to explain some of the ways we can define the mod p reduction, and the classifications of which reduction types occur.

Topics to be covered include the classical reduction types (good/multiplicative/additive), the Kodaira-Neron reduction types that refine them, and the Raynaud parametrisation of a semistable abelian variety. Time permitting, we may also discuss joint work with Vladimir Dokchitser classifying the semistable reduction types of 2-dimensional abelian varieties.

Mon, 16 Nov 2015

16:00 - 17:00
C2

IP sets, recurrence, and polynomials

Jakub Konieczny
(Oxford)
Abstract

I will discuss the many appearances of the class of IP sets in classical theorems of combinatorial number theory and ergodic theory. Our point of departure will be the celebrated theorem of Hindman on partition regularity of IP sets, which is crucial for the introduction of IP-limits. We then discuss how existence of certain IP-limits translates into recurrence statements, which in turn give rise to results in number theory via the Furstenberg correspondence principle. Throughout the talk, the methods of ergodic theory will play an important role - however, no prior familiarity with them is required.

Mon, 09 Nov 2015

16:00 - 17:00
C2

Characterising the Integers in the Rationals

Philip Dittmann
(Oxford)
Abstract

Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.

Mon, 02 Nov 2015

16:00 - 17:00
C2

The Arithmetic of K3 Surfaces

Christopher Nicholls
(Oxford)
Abstract

The study of rational points on K3 surfaces has recently seen a lot of activity. We discuss how to compute the Picard rank of a K3 surface over a number field, and the implications for the Brauer-Manin obstruction.

Mon, 26 Oct 2015

16:00 - 17:00
C2

Some ideas on rational/integral points on algebraic curves

Junghwan Lim
(Oxford)
Abstract

I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.

Mon, 19 Oct 2015

16:00 - 17:00
C2

Algebraic Automorphic Forms and the Langlands Program

Benjamin Green
(Oxford)
Abstract

In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture. 

Mon, 15 Jun 2015

16:00 - 17:00
C2

Almost similar p-adic representations: crystalline versus étale.

Junghwan Lim
(Oxford)
Abstract

I will introduce the general idea of p-adic Hodge theory from the view point of a beginner. Also, I will give a sketch of the proof of the crystalline comparison theorem in the case of good reduction using 'almost mathematics'.

 

Mon, 08 Jun 2015

16:00 - 17:00
C2

Diophantine geometry over function fields

Netan Dogra
(Oxford)
Abstract

Many hard problems in Diophantine geometry have analogues over function fields which are less hard. I will give some examples.

Mon, 01 Jun 2015

16:00 - 17:00
C2

Perfectoid spaces and the tilting equivalence

Alex Betts
(Oxford)
Abstract

We will give a sketch overview of Scholze's theory of perfectoid spaces and the tilting equivalence, starting from Huber's geometric approach to valuation theory. Applications to weight-monodromy and p-adic Hodge theory we will only hint at, preferring instead to focus on examples which illustrate the philosophy of tilting equivalence.
 

Mon, 18 May 2015

16:00 - 17:00
C2

A Survey of Results on the Section Conjecture

Michael Tyler
(Exeter)
Abstract

After some generalities on étale fundamental groups and anabelian geometry, I will explore some of the current results on the section conjecture, including those of Koenigsmann and Pop on the birational section conjecture, and a recent unpublished result of Mohamed Saidi which reduces the section conjecture for finitely generated fields over the rationals to the case of number fields.

Mon, 27 Apr 2015

16:00 - 17:00
C2

Langlands Functoriality for Symplectic Groups

Benjamin Green
(Oxford)
Abstract

In this talk I will describe two instances of Langlands functoriality concerning the group $\mathrm{Sp}_{2n}$. I will then very briefly explain how this enables one to attach Galois representations to automorphic representations of (inner forms of) $\mathrm{Sp}_{2n}$. 

Mon, 23 Feb 2015

16:00 - 17:00
C2

A multiplicative analogue of Schnirelmann's Theorem

Aled Walker
(Oxford)
Abstract

In 1937 Vinogradov showed that every sufficiently large odd number is the sum of three primes, using bounds on the sums of additive characters taken over the primes. He was improving, rather dramatically, on an earlier result of Schnirelmann, which showed that every sufficiently large integer is the sum of at most 37 000 primes. We discuss a natural analogue of this question in the multiplicative group (Z/pZ)* and find that, although the current unconditional character sum technology is too weak to use Vinogradov's approach, an idea from Schnirelmann's work still proves fruitful. We will use a result of Selberg-Delange, an application of a small sieve, and a few easy ideas from additive combinatorics. 

Mon, 16 Feb 2015

16:00 - 17:00
C2

O-minimality and applications

Haden Spence
(Oxford)
Abstract

In this talk I will discuss the notion of o-minimality, which can be approached from either a model-theoretic standpoint, or an algebraic one.  I will exhibit some o-minimal structures, focussing on those most relevant to number theorists, and attempt to explain how o-minimality can be used to attain an assortment of results.

Mon, 19 Jan 2015

16:00 - 17:00
C2

Symplectic and Orthogonal Automorphic Representations

Benjamin Green
(Oxford)
Abstract

In this talk I will describe Arthur's classification of automorphic representations of symplectic and orthogonal groups using automorphic representations of $\mathrm{GL}_N$.

Mon, 17 Nov 2014

16:00 - 17:00
C2

Grothendieck Duality through Modern Methods

Alex Betts
(Oxford)
Abstract
We give an overview of Amnon Neeman's proof of Grothendieck's duality, working in the unbounded derived category and constructing the exceptional inverse image functor by appealing to an abstract adjoint functor theorem. The focus will be on developing the theory of the unbounded derived category and Spaltenstein's techniques for applying this theory in the algebro-geometric framework.
Mon, 10 Nov 2014

16:00 - 17:00
C2

Tropical Jacobians

Jan Vonk
(Oxford)
Abstract

We will discuss Raynaud's classical theory on Néron models of Jacobians of curves, and mention some tropical aspects of the theory that help us understand modular curves from a modern non-Archimedean viewpoint. There will be an annoyingly large number of examples illustrating the key principles throughout. 

Mon, 03 Nov 2014

16:00 - 17:00
C2

The Distribution of Prime Gaps

James Maynard
(Oxford)
Abstract

Cramer conjectured a random model for the distribution of the primes, which would suggest that, on the scale of the average prime gap, the primes can be modelled by a Poisson process. In particular, the set of limit points of normalized prime gaps would be the whole interval $[0,\infty)$. I will describe joint work with Banks and Freiberg which shows that at least 1/8 of the positive reals are in the set of limit points. 

Mon, 27 Oct 2014

16:00 - 17:00
C2

Systems of many forms

Simon Rydin Myerson
(Oxford)
Abstract

Consider a nonsingular projective variety $X$ defined by a system of $R$ forms of the same degree $d$. The circle method proves the Hasse principle and Manin's conjecture for $X$ when $\text{dim}X > C(d,R)$. I will describe how to improve the value of $C$ when $R$ is large. I use a technique for estimating mean values of exponential sums which I call a ``moat lemma". This leads to a novel and intriguing system of auxiliary inequalities.

 

Mon, 20 Oct 2014

16:00 - 17:00
C2

Galois Theory and the S-unit Equation

Netan Dogra
(Oxford)
Abstract
For a finite set of primes S, the S-unit equation asks for solutions to a+b=1, with
a and b rational numbers which are units at all primes not in S. By a theorem of Siegel,
for any given S this equation will only have finitely many solutions. This talk will review
the relation between this equation and other Diophantine problems, and will explain a
Galois-theoretic approach to proving Siegel's theorem.