I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.

# Past Junior Number Theory Seminar

In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture.

I will introduce the general idea of p-adic Hodge theory from the view point of a beginner. Also, I will give a sketch of the proof of the crystalline comparison theorem in the case of good reduction using 'almost mathematics'.

Many hard problems in Diophantine geometry have analogues over function fields which are less hard. I will give some examples.

We will give a sketch overview of Scholze's theory of perfectoid spaces and the tilting equivalence, starting from Huber's geometric approach to valuation theory. Applications to weight-monodromy and p-adic Hodge theory we will only hint at, preferring instead to focus on examples which illustrate the philosophy of tilting equivalence.

After some generalities on étale fundamental groups and anabelian geometry, I will explore some of the current results on the section conjecture, including those of Koenigsmann and Pop on the birational section conjecture, and a recent unpublished result of Mohamed Saidi which reduces the section conjecture for finitely generated fields over the rationals to the case of number fields.

In this talk I will describe two instances of Langlands functoriality concerning the group $\mathrm{Sp}_{2n}$. I will then very briefly explain how this enables one to attach Galois representations to automorphic representations of (inner forms of) $\mathrm{Sp}_{2n}$.

In 1937 Vinogradov showed that every sufficiently large odd number is the sum of three primes, using bounds on the sums of additive characters taken over the primes. He was improving, rather dramatically, on an earlier result of Schnirelmann, which showed that every sufficiently large integer is the sum of at most 37 000 primes. We discuss a natural analogue of this question in the multiplicative group (Z/pZ)* and find that, although the current unconditional character sum technology is too weak to use Vinogradov's approach, an idea from Schnirelmann's work still proves fruitful. We will use a result of Selberg-Delange, an application of a small sieve, and a few easy ideas from additive combinatorics.