# Past Junior Topology and Group Theory Seminar

In this talk I will try to show how certain asymptotic properties of a random walk on a graph are related to geometric properties of the graph itself. A special focus will be put on spectral properties and isoperimetric inequalities, proving Kesten's criterion for amenability.

We say a group is accessible if the process of iteratively decomposing G as an amalgamated free product or HNN extension over a finite group terminates in a finite number of steps. We will see Dunwoody's proof that FP2 groups are accessible, but that finitely generated groups need not be. If time permits, we will examine generalizations by Bestvina-Feighn, Sela and Louder.

This talk will be an introduction to the weird and wonderful world of Thompson's groups $F$, $T$ and $V$. For example, the group $T$ was the first known finitely presented infinite simple group, $V$ has a finitely presented subgroup with co-NP-complete word problem, and whether or not $F$ is amenable is an infamous open problem.

Localization and completion of spaces are fundamental tools in homotopy theory. "Zabrodsky mixing" uses localization to "mix homotopy types". It was used to provide a counterexample to the conjecture that any finite H-space which is $A_3$ is also $A_\infty$. The material in this talk will be very classical (and rather basic). I will describe Sullivan's localization functor and demonstrate Zabrodsky's mixing by constructing a non-classical H-space.

A group is called residually finite if every non-trivial element can be homomorphically mapped to a finite group such that the image is again non-trivial. Residually finite groups are interesting because quite a lot of information about them can be reconstructed from their finite quotients. Baumslag showed that if G is a finitely generated residually finite group then Aut(G) is also residually finite. Using a similar method Grossman showed that if G is a finitely generated conjugacy separable group with "nice" automorphisms then Out(G) is residually finite. The graph product is a group theoretic construction naturally generalising free and direct products in the category of groups. We show that if G is a finite graph product of finitely generated residually finite groups then Out(G) is residually finite (modulo some technical conditions)

A Kähler group is a group which is isomorphic to the fundamental group of a compact Kähler manifold. In 2008 Dimca and Suciu proved that the groups which are both Kähler and isomorphic to the fundamental group of a closed 3-manifold are precisely the finite subgroups of $O(4)$ which act freely on $S^3$. In this talk we will explain Kotschick's proof of this result. On the 3-manifold side the main tools that will be used are the first Betti number and Poincare Duality and on the Kähler group side we will make use of the Albanese map and some basic results about Kähler groups. All relevant notions will be explained in the talk.

In Bass-Serre theory, one derives structural properties of groups from their actions on simplicial trees. In this talk, we introduce the theory of groups acting on $\mathbb{R}$-trees. In particular, we explain how the Rips machine is used to classify finitely generated groups which act freely on $\mathbb{R}$-trees.

I will look at some decidability questions for subgroups of Aut($F_n$) for general $n$. I will then discuss semisimple actions of Aut($F_n$) on complete CAT(0) spaces proving that the Nielsen moves will act elliptically. I will also look at proving Aut($F_3$) is large and if time permits discuss the fact that Aut($F_n$) is not Kähler

This talk will give an almost complete proof of the h-cobordism theorem, paying special attention to the sources of the dimensional restrictions in the theorem. If time allows, the alterations needed to prove its cousin, the s-cobordism theorem, will also be sketched.