The Dehn function of a group measures the complexity of the group's word problem, being the upper bound on the number of relations from a group presentation required to prove that a word in the generators represents the identity element. The Filling Theorem which was first stated by Gromov connects this to the isoperimetric functions of Riemannian manifolds. In this talk, we will see the classification of hyperbolic groups as those with a linear Dehn function, and give Bowditch's proof that a subquadratic isoperimetric inequality implies a linear one (which gives the only gap in the "isoperimetric spectrum" of exponents of polynomial Dehn functions).

# Past Junior Topology and Group Theory Seminar

We will give an outline of the proof by Kahn and Markovic who showed that a closed hyperbolic 3-manifold $\textbf{M}$ contains a closed $\pi_1$-injective surface. This is done using exponential mixing to find many pairs of pants in $\textbf{M}$, which can then be glued together to form a suitable surface. This answers a long standing conjecture of Waldhausen and is a key ingredient in the proof of the Virtual Haken Theorem.

Dinits, Karzanov and Lomonosov showed that the minimal edge cuts of a finite graph have the structure of a cactus, a tree-like graph constructed from cycles. Evangelidou and Papasoglu extended this to minimal cuts separating the ends of an infinite graph. In this talk we will discuss a similar structure theorem for minimal vertex cuts separating the ends of a graph; these can be encoded by a succulent, a mild generalization of a cactus that is still tree-like.

After motivating why we would like to find examples of simple totally disconnected locally compact groups, I will describe a construction due to Banks, Elder and Willis which yields infinitely many such examples when given certain groups acting on a tree.

I shall outline a general method for finding upper bounds on the
diameters of finite groups, based on the Solovay-Kitaev procedure from
quantum computation. This method may be fruitfully applied to groups
arising as quotients of many familiar pro-p groups. Time permitting, I
will indicate a connection with weak spectral gap, and give some
applications.

Waldhausen defined higher K-groups for categories with certain extra structure. In this talk I will define categories with cofibrations and weak equivalences, outline Waldhausen's construction of the associated K-Theory space, mention a few important theorems and give some examples. If time permits I will discuss the infinite loop space structure on the K-Theory space.

Subgroup separability is a group-theoretic property that has important implications for geometry and topology, because it allows us to lift immersions to embeddings in a finite sheeted covering space. I will describe how this works in the case of graphs, and go on to motivate the construction of special cube complexes as an attempt to generalise the technique to higher dimensions.

As the title says, in this talk I will be giving a casual introduction to higher categories. I will begin by introducing strict n-categories and look closely at the resulting structure for n=2. After discussing why this turns out to be an unsatisfying definition I will discuss in what ways it can be weakened. Broadly there are two main classes of models for weak n-categories: algebraic and geometric. The differences between these two classes will be demonstrated by looking at bicategories on the algebraic side and quasicategories on the geometric.

Brady showed that there are hyperbolic groups with non-hyperbolic finitely presented subgroups. I will present a new construction of this kind using Bestvina-Brady Morse theory.