The Nottingham Group of a finite field is an object of great interest in profinite group theory, owing to its extreme structural properties and the relative ease with which explicit computations can be made within it. In this talk I shall explore both of these themes, before describing some new work on efficient short-word approximation in the Nottingham Group, based on the profinite Solovay-Kitaev procedure. Time permitting, I shall give an application to the dynamics of compositions of random power series.

# Past Junior Topology and Group Theory Seminar

Deciding whether or not two elements of a group are conjugate might seem like a trivial problem. However, there exist finitely presented groups where this problem is undecidable: there is no algorithm to output yes or no for any two elements chosen. In this talk Houghton groups (a family of groups all having solvable conjugacy problem) will be introduced as will the idea of twisted conjugacy: a generalisation of the conjugacy problem where an automorphism is also given. This will be our main tool in answering whether finite extensions and finite index subgroups of any Houghton group have solvable conjugacy problem.

We saw earlier that a subquadratic isoperimetric inequality implies a linear one. I will give examples of groups, due to Brady and Bridson, which prove that this is the only gap in the isoperimetric spectrum.

In 1983 Kerckhoff settled a long standing conjecture by Nielsen proving that every finite subgroup of the mapping class group of a compact surface can be realized as a group of diffeomorphisms. An important consequence of this theorem is that one can now try to study subgroups of the mapping class group taking the quotient of the surface by these groups of diffeomorphisms. In this talk we will study quotients of surfaces under the action of a finite group to find bounds on the cardinality of such a group.

The Dehn function of a group measures the complexity of the group's word problem, being the upper bound on the number of relations from a group presentation required to prove that a word in the generators represents the identity element. The Filling Theorem which was first stated by Gromov connects this to the isoperimetric functions of Riemannian manifolds. In this talk, we will see the classification of hyperbolic groups as those with a linear Dehn function, and give Bowditch's proof that a subquadratic isoperimetric inequality implies a linear one (which gives the only gap in the "isoperimetric spectrum" of exponents of polynomial Dehn functions).

We will give an outline of the proof by Kahn and Markovic who showed that a closed hyperbolic 3-manifold $\textbf{M}$ contains a closed $\pi_1$-injective surface. This is done using exponential mixing to find many pairs of pants in $\textbf{M}$, which can then be glued together to form a suitable surface. This answers a long standing conjecture of Waldhausen and is a key ingredient in the proof of the Virtual Haken Theorem.

Dinits, Karzanov and Lomonosov showed that the minimal edge cuts of a finite graph have the structure of a cactus, a tree-like graph constructed from cycles. Evangelidou and Papasoglu extended this to minimal cuts separating the ends of an infinite graph. In this talk we will discuss a similar structure theorem for minimal vertex cuts separating the ends of a graph; these can be encoded by a succulent, a mild generalization of a cactus that is still tree-like.

After motivating why we would like to find examples of simple totally disconnected locally compact groups, I will describe a construction due to Banks, Elder and Willis which yields infinitely many such examples when given certain groups acting on a tree.

I shall outline a general method for finding upper bounds on the
diameters of finite groups, based on the Solovay-Kitaev procedure from
quantum computation. This method may be fruitfully applied to groups
arising as quotients of many familiar pro-p groups. Time permitting, I
will indicate a connection with weak spectral gap, and give some
applications.