Past Kinderseminar

12 March 2014
10:30
Robert Kropholler
Abstract
I will discuss free-by-cyclic groups and cases where they can and cannot act on CAT(0) spaces. I will specifically go into a construction building CAT(0) 2-complexes on which free of rank 2-by-cyclic act. This is joint work with Martin Bridson and Martin Lustig.
5 March 2014
10:30
Benjamin Green
Abstract
The modularity theorem saying that all (semistable) elliptic curves are modular was one of the two crucial parts in the proof of Fermat's last theorem. In this talk I will explain what elliptic curves being 'modular' means and how an alternative definition can be given in terms of Galois representations. I will then state some of the conjectures of the Langlands program which in some sense generalise the modularity theorem.
19 February 2014
10:30
Lukas Buggisch
Abstract
The classical small cancellation theory goes back to the 1950's and 1960's when the geometry of 2-complexes with a unique 0-cell was studied, i.e. the standard 2-complex of a finite presentation. D.T. Wise generalizes the Small Cancellation Theory to 2-complexes with arbitray 0-cells showing that certain classes of Small Cancellation Groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and hence have codimesion 1-subgroups. To be more precise I will introduce "his" version of small Cancellation Theory and go roughly through the main ideas of his construction of the cube complex using Sageeve's famous construction. I'll try to make the ideas intuitively clear by using many pictures. The goal is to show that B(4)-T(4) and B(6)-C(7) groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and if there is time to explain the difficulty of the B(6) case. The talk should be self contained. So don't worry if you have never had heard about "Small Cancellation".
12 February 2014
10:30
Giles Gardam
Abstract
We will introduce some necessary basic notions regarding formal languages, before proceeding to give the classification of groups whose word problem is context-free as the virtually free groups (due to Muller and Schupp (1983) together with Dunwoody's accessibility of finitely presented groups (1985) for full generality). Emphasis will be on the group theoretic aspects of the proof, such as Stalling's theorem on ends of groups, accessibility, and geometry of the Cayley graph (rather than emphasizing details of formal languages).
5 February 2014
10:30
Claudio Llosa Isenrich
Abstract
A Kähler group is a finitely presented group that can be realized as fundamental group of a compact Kähler manifold. It is known that every finitely presented group can be realized as fundamental group of a compact real and even symplectic manifold of dimension greater equal than 4 and of a complex manifold of complex dimension greater equal than 2. In contrast, the question which groups are Kähler groups is surprisingly harder and there are large classes of examples for both, Kähler, and non-Kähler groups. This talk will give a brief introduction to the theory of Kähler manifolds and then discuss some basic examples and properties of Kähler groups. It is aimed at a general audience and no prior knowledge of the field will be required.
29 January 2014
10:30
Robert Laugwitz
Abstract
<p>This talk aims to illustrate how graphical calculus can be used to reason about Hopf algebras and their modules. The talk will be aimed at a general audience requiring no previous knowledge of the topic.</p>
22 January 2014
10:30
Simon Rydin-Myerson
Abstract
A major project in number theory runs as follows. Suppose some Diophantine equation has infinitely many integer solutions. One can then ask how common solutions are: roughly how many solutions are there in integers $\in [ -B, \, B ] $? And ideally one wants an answer in terms of the geometry of the original equation. What if we ask the same question about Diophantine inequalities, instead of equations? This is surely a less deep question, but has the advantage that all the geometry we need is over $\mathbb{R}$. This makes the best-understood examples much easier to state and understand.
4 December 2013
10:30
Giles Gardam
Abstract
Kazhdan introduced property (T) for locally compact topological groups to show that certain lattices in semisimple Lie groups are finitely generated. This talk will give an introduction to property (T) along with some first consequences and examples. We will finish with a classic application of property (T) due to Margulis: the first known construction of expanders.
27 November 2013
10:30
Mark Penney
Abstract
I will discuss what it means to compactify complex Lie groups and introduce the so-called "Wonderful Compactification" of groups having trivial centre. I will then show how the wonderful compactification of PGL(n) can be described in terms of complete collineations. Finally, I will discuss how the new perspective provided by complete collineations provides a way to construct compactifications of arbitrary semisimple groups.

Pages