Past Logic Seminar

27 April 2017
Vincenzo Mantova

Transseries arise naturally when solving differential equations around essential singularities. Just like most Taylor series are not convergent, most transseries do not converge to real functions, even when using advanced summation techniques.


On the other hand, we can show that all classical transseries induce analytic functions on the surreal line. In fact, this holds for an even larger (proper) class of series which we call "omega-series".


Omega-series can be composed and differentiated, like LE-series, and they form a differential subfield of surreal numbers equipped with the simplest derivation. This raises once again the question whether all surreal numbers can be also interpreted as functions. Unfortunately, it turns out that the simplest derivation is in fact incompatible with this goal.


This is joint work with A. Berarducci.

9 March 2017
Tobias Kaiser

We discuss how one can define transseries in several variables. The idea is
to combine the construction of the univariate transseries with a blow up procedure. The
latter allows to normalize transseries in an arbitrary number of variables which makes
them manageable as usual transseries.

3 March 2017
Paola D'Aquino

We give a description of the spectra of $\hat{\mathbb Z}$ and of the
finite adeles using  ultraproducts. In describing the prime ideals and the
localizations, ultrapowers of the group $\mathbb Z$ and ultraproducts of
rings of $p$-adic integers are used.

9 February 2017
Patrick Speissegger

In 1923, Dulac published a proof of the claim that every real analytic vector field on the plane has only finitely many limit cycles (now known as Dulac's Problem). In the mid-1990s, Ilyashenko completed Dulac's proof; his completion rests on the construction of a quasianalytic class of functions. Unfortunately, this class has very few known closure properties. For various reasons I will explain, we are interested in constructing a larger quasianalytic class that is also a Hardy field. This can be achieved using Ilyashenko's idea of superexact asymptotic expansion.  (Joint work with Tobias Kaiser)

9 February 2017
Kobi Peterzil

(joint work with Sergei Starchenko)

Let p:C^n ->A be the covering map of a complex abelian variety and let X be an algebraic variety of C^n, or more generally a definable set in an o-minimal expansion of the real field. Ullmo and Yafaev investigated the topological closure of p(X) in A in the above two  settings and conjectured that the frontier of p(X) can be described, when X is algebraic as finitely many cosets of real sub tori of A, They proved the conjecture when dim X=1. They make a similar conjecture for X definable in an o-minimal structure.

In recent work we show that the above conjecture fails as stated, and prove a modified version,  describing the frontier of p(X) as finitely many families of cosets of subtori. We prove a similar result when X is a definable set in an o-minimal structure and p:R^n-> T is the covering map of a real torus.  The proofs use model theory of o-minimal structures as well as algebraically closed valued fields.

2 February 2017
Boris Zilber

I will start with a motivation of what algebraic and model-theoretic properties an algebraically closed field of characteristic 1 is expected to have. Then I will explain how these properties forces one to follow the route of Hrushovski's construction/Schanuel-type conjecture analysis. Then I am able to formulate very precise axioms that such a field must satisfy.  The main theorem then states that under the axioms the structure has the desired algebraic properties.
The axioms have a form of statements about existence of solutions to systems of equations in terms of a 'multi-dimansional' valuation theory and the validity of these statements is an open problem to be discussed. 


26 January 2017
Arno Fehm

In joint work with Sylvy Anscombe we had found an abstract
valuation theoretic condition characterizing those fields F for which
the power series ring F is existentially 0-definable in its
quotient field F((t)). In this talk I will report on recent joint work
with Sylvy Anscombe and Philip Dittmann in which the study of this
condition leads us to some beautiful results on the border of number
theory and model theory. In particular, I will suggest and apply a
p-adic analogue of Lagrange's Four Squares Theorem.

19 January 2017
Adam Topaz

There are several conjectures in the literature suggesting that absolute Galois groups of fields tend to be "as free as possible," given their "almost-abelian" data.
This can be made precise in various ways, one of which is via the notion of "1-formality" arising in analogy with the concept in rational homotopy theory.
In this talk, I will discuss several examples which illustrate this phenomenon, as well as some surprising diophantine consequences.
This discussion will also include some recent joint work with Guillot, Mináč, Tân and Wittenberg, concerning the vanishing of mod-2 4-fold Massey products in the Galois cohomology of number fields.

1 December 2016
Gareth Jones

After giving some motivation, I will discuss work in progress with Harry Schmidt in which we give a pfaffian definition of Weierstrass elliptic functions, refining a result due to Macintyre. The complexity of our definition is bounded by an effective absolute constant. As an application we give an effective version of a result of Corvaja, Masser and Zannier on a sharpening of Manin-Mumford for non-split extensions of elliptic curves by the additive group. We also give a higher dimensional version of their result.