Past Mathematical Biology and Ecology Seminar

16 October 2015
14:00
Dr Sharon Lubkin
Abstract

Mammalian lung morphology is well optimized for efficient bulk transport of gases, yet most lung morphogenesis occurs prenatally, when the lung is filled with liquid - and at birth it is immediately ready to function when filled with gas. Lung morphogenesis is regulated by numerous mechanical inputs including fluid secretion, fetal breathing movements, and peristalsis. We generally understand which of these broad mechanisms apply, and whether they increase or decrease overall size and/or branching. However, we do not generally have a clear understanding of the intermediate mechanisms actuating the morphogenetic control. We have studied this aspect of lung morphogenesis from several angles using mathematical/mechanical/transport models tailored to specific questions. How does lumen pressure interact with different locations and tissues in the lung? Is static pressure equivalent to dynamic pressure? Of the many plausible cellular mechanisms of mechanosensing in the prenatal lung, which are compatible with the actual mechanical situation? We will present our models and results which suggest that some hypothesized intermediate mechanisms are not as plausible as they at first seem.

 

  • Mathematical Biology and Ecology Seminar
19 June 2015
14:00
Abstract

As the fundamental unit of life, the biological cell is a natural focus for computational simulations of growing cell population and tissues. However, models developed at the cellular scale can also be integrated into more complex multiscale models in order to examine complex biological and physical process that scan scales from the molecule to the organ.

This seminar will present a selection of the cellular scale agent-based modelling that has taken place at the University of Sheffield (where one software agent represents one biological cell) and how such models can be used to examine collective behaviour in cellular systems. Finally some of the issues in extending to multiscale models and the theoretical and computational methodologies being developed in Sheffield and by the wider community in this area will be presented.

  • Mathematical Biology and Ecology Seminar
5 June 2015
14:00
Abstract

Data in many areas of science and sociology is now routinely represented in the form of networks. A fundamental task often required is to compare two datasets (networks) to assess the level of similarity between them. In the context of biological sciences, networks often represent either direct or indirect molecular interactions and an active research area is to assess the level of conservation of interaction patterns across species.

Currently biological network comparison software largely relies on the concept of alignment where close matches between the nodes of two or more networks are sought. These node matches are based on sequence similarity and/or interaction patterns. However, because of the incomplete and error-prone datasets currently available, such methods have had limited success. Moreover, the results of network alignment are in general not amenable for distance-based evolutionary analysis of sets of networks. In this talk I will describe Netdis, a topology-based distance measure between networks, which offers the possibility of network phylogeny reconstruction.

  • Mathematical Biology and Ecology Seminar
22 May 2015
14:00
Dr Martin Bishop
Abstract

Sudden cardiac arrhythmic death remains a major health challenge in Western Society. Recent advances in computational methods and technologies have made clinically-based cardiac modelling a reality. An important current focus is the use of modelling to understand the nature of arrhythmias in the setting of different forms of structural heart disease. However, many challenges remain regarding the best use of these models to inform clinical decision making and guide therapies. In this talk, I will introduce a diverse sample of applications of modelling in this context, ranging from basic science studies which aim to leverage a fundamental mechanistic understanding of different aspects of pathological cardiac function, to direct clinical-application projects which aim to use modelling to immediately inform a clinical therapy. I will also discuss the challenges involved in clinically-driven modelling, and how to both engage, and manage, the expectations of clinicians at the same time, particularly with respect to the potential uses of 'patient-specific' modelling.

  • Mathematical Biology and Ecology Seminar
15 May 2015
14:00
Prof Stefan Engblom
Abstract

I this talk I will try to give an overview of recent progress in
spatial stochastic modeling within the reaction-diffusion
framework. While much of the initial motivation for this work came
from problems in cell biology, I will also highlight some examples
from epidemics and neuroscience.

As a motivating introduction, some newly discovered properties of
optimal controls in stochastic enzymatic reaction networks will be
presented. I will next detail how diffusive and subdiffusive reactive
processes in realistic geometries at the cellular scale may be modeled
mesoscopically. Along the way, some different means by which these
models may be analyzed with respect to consistency and convergence
will also be discussed. These analytical techniques hint at how
effective (i.e. parallel) numerical implementations can be
designed. Large-scale simulations will serve as illustrations.

  • Mathematical Biology and Ecology Seminar

Pages