Past Mathematical Biology and Ecology Seminar

5 June 2015
14:00
Abstract

Data in many areas of science and sociology is now routinely represented in the form of networks. A fundamental task often required is to compare two datasets (networks) to assess the level of similarity between them. In the context of biological sciences, networks often represent either direct or indirect molecular interactions and an active research area is to assess the level of conservation of interaction patterns across species.

Currently biological network comparison software largely relies on the concept of alignment where close matches between the nodes of two or more networks are sought. These node matches are based on sequence similarity and/or interaction patterns. However, because of the incomplete and error-prone datasets currently available, such methods have had limited success. Moreover, the results of network alignment are in general not amenable for distance-based evolutionary analysis of sets of networks. In this talk I will describe Netdis, a topology-based distance measure between networks, which offers the possibility of network phylogeny reconstruction.

  • Mathematical Biology and Ecology Seminar
22 May 2015
14:00
Dr Martin Bishop
Abstract

Sudden cardiac arrhythmic death remains a major health challenge in Western Society. Recent advances in computational methods and technologies have made clinically-based cardiac modelling a reality. An important current focus is the use of modelling to understand the nature of arrhythmias in the setting of different forms of structural heart disease. However, many challenges remain regarding the best use of these models to inform clinical decision making and guide therapies. In this talk, I will introduce a diverse sample of applications of modelling in this context, ranging from basic science studies which aim to leverage a fundamental mechanistic understanding of different aspects of pathological cardiac function, to direct clinical-application projects which aim to use modelling to immediately inform a clinical therapy. I will also discuss the challenges involved in clinically-driven modelling, and how to both engage, and manage, the expectations of clinicians at the same time, particularly with respect to the potential uses of 'patient-specific' modelling.

  • Mathematical Biology and Ecology Seminar
15 May 2015
14:00
Prof Stefan Engblom
Abstract

I this talk I will try to give an overview of recent progress in
spatial stochastic modeling within the reaction-diffusion
framework. While much of the initial motivation for this work came
from problems in cell biology, I will also highlight some examples
from epidemics and neuroscience.

As a motivating introduction, some newly discovered properties of
optimal controls in stochastic enzymatic reaction networks will be
presented. I will next detail how diffusive and subdiffusive reactive
processes in realistic geometries at the cellular scale may be modeled
mesoscopically. Along the way, some different means by which these
models may be analyzed with respect to consistency and convergence
will also be discussed. These analytical techniques hint at how
effective (i.e. parallel) numerical implementations can be
designed. Large-scale simulations will serve as illustrations.

  • Mathematical Biology and Ecology Seminar
27 February 2015
14:00
Dr Steven Niederer
Abstract

Computational models of the heart have been primarily developed to simulate, analyse and understand experimental measurements. Increasingly biophysical models are being used to understand cardiac disease and pathologies in patients. This shift from laboratory to clinical contexts requires the development of new modelling frameworks to simulate pathological states that invalidate assumptions in existing modelling frameworks, work flows to integrate multiple data sets to constrain model parameters and an understanding of the clinical questions that models can answer. We report on the development and application of biophysical modelling frameworks representing the cardiac electrical and mechanical systems, which are currently being customised for modelling cardiac pathologies.

  • Mathematical Biology and Ecology Seminar

Pages