We consider a controlled stochastic system in presence of state-constraints. Under the assumption of exponential stabilizability of the system near a target set, we aim to characterize the set of points which can be asymptotically driven by an admissible control to the target with positive probability. We show that this set can be characterized as a level set of the optimal value function of a suitable unconstrained optimal control problem which in turn is the unique viscosity solution of a second order PDE which can thus be interpreted as a generalized Zubov equation.

# Past Mathematical Finance Internal Seminar

In this talk we present a new type of Soblev norm defined in the space of functions of continuous paths. Under the Wiener probability measure the corresponding norm is suitable to prove the existence and uniqueness for a large type of system of path dependent quasi-linear parabolic partial differential equations (PPDE). We have establish 1-1 correspondence between this new type of PPDE and the classical backward SDE (BSDE). For fully nonlinear PPDEs, the corresponding Sobolev norm is under a sublinear expectation called G-expectation, in the place of Wiener expectation. The canonical process becomes a new type of nonlinear Brownian motion called G-Brownian motion. A similar 1-1 correspondence has been established. We can then apply the recent results of existence, uniqueness and principle of comparison for BSDE driven by G-Brownian motion to obtain the same result for the PPDE.

We study the problem of maximizing expected utility from terminal wealth in a semi-static market composed of derivative securities, which we assume can be traded only at time zero, and of stocks, which can be

traded continuously in time and are modeled as locally-bounded semi-martingales.

Using a general utility function defined on the positive real line, we first study existence and uniqueness of the solution, and then we consider the dependence of the outputs of the utility maximization problem on the price of the derivatives, investigating not only stability but also differentiability, monotonicity, convexity and limiting properties.

We analyze the portfolio choice problem of investors who maximize rank dependent utility in a single-period complete market. We propose a new

notion of less risk taking: choosing optimal terminal wealth that pays off more in bad states and less in good states of the economy. We prove that investors with a less risk averse preference relation in general choose more risky terminal wealth, receiving a risk premium in return for accepting conditional-zero-mean noise (more risk). Such general comparative static results do not hold for portfolio weights, which we demonstrate with a counter-example in a continuous-time model. This in turn suggests that our notion of less risk taking is more meaningful than the traditional notion based on holding less stocks.

This is a joint work with Xuedong He and Roy Kouwenberg.

I introduce Stochastic Portfolio Theory (SPT), which is an alternative approach to optimal investment, where the investor aims to beat an index instead of optimising a mean-variance or expected utility criterion. Portfolios which achieve this are called relative arbitrages, and simple and implementable types of such trading strategies have been shown to exist in very general classes of continuous semimartingale market models, with unspecified drift and volatility processes but realistic assumptions on the behaviour of stocks which come from empirical observation. I present some of my recent work on this, namely the so-called diversity-weighted portfolio with negative parameter. This portfolio outperforms the market quite significantly, for which I have found both theoretical and empirical evidence.

1. Minimising Regret in Portfolio Optimisation (Simões)

When looking for an "optimal" portfolio the traditional approach is to either try to minimise risk or maximise profit. While this approach is probably correct for someone investing their own wealth, usually traders and fund managers have other concerns. They are often assessed taking into account others' performance, and so their decisions are molded by that. We will present a model for this decision making process and try to find our own "optimal" portfolio.

2. Systemic risk in financial networks (Murevics)

Abstract: In this paper I present a framework for studying systemic risk and financial contagion in interbank networks. The current financial health of institutions is expressed through an abstract measure of robustness, and the evolution of robustness in time is described through a system of stochastic differential equations. Using this model I then study how the structure of the interbank lending network affects the spread of financial contagion through different contagion channels and compare the results for different network structures. Finally I outline the future directions for developing this model.

1. Calibration and Pricing of Financial Derivatives using Forward PDEs (Mariapragassam)

Nowadays, various calibration techniques are in use in the financial industry and the exact re-pricing of call options is a must-have standard. However, practitioners are increasingly interested in taking into account the quotes of other derivatives as well.

We describe our approach to the calibration of a specific Local-Stochastic volatility model proposed by the FX group at BNP Paribas. We believe that forward PDEs are powerful tools as they allow to achieve stable and fast best-fit routines. We will expose our current results on this matter.

Joint work with Prof. Christoph Reisinger

2. Infinite discrete-time investment and consumption problem (Li)

We study the investment and consumption problem in infinite discrete-time framework. In our problem setting, we do not need the wealth process to be positive at any time point. We first analyze the time-consistent case and give the convergence of value function for infinite-horizon problem by value functions of finite-horizon problems.

Then we discuss the time-consistent case, and hope the value functions of finite-horizon problems will still converge to the infinite-horizon problem.

1. A Hybrid Monte-Carlo Partial Differential Solver for Stochastic Volatility Models (Cozma)

In finance, Monte-Carlo and Finite Difference methods are the most popular approaches for pricing options. If the underlying asset is modeled by a multidimensional system of stochastic differential equations, an analytic solution is rarely available and working under a given computational budget comes at the cost of accuracy. The mixed Monte-Carlo partial differential solver introduced by Loeper and Pironneau (2009) is one way to overcome this issue and we investigate it thoroughly for a number of stochastic volatility models. Our main concern is to provide a rigorous mathematical proof of the convergence of the hybrid method under different frameworks, which in turn justifies the use of Monte-Carlo simulations to compute the expected discounted payoff of the financial derivative. Then, we carry out a quantitative assessment based on a European call option by comparison with alternative numerical methods.

2. tbc (Brackmann)