Forthcoming events in this series


Thu, 01 Dec 2011

16:00 - 17:00
L3

Sharpening `Manin-Mumford' for certain algebraic groups of dimension 2

Umberto Zannier (Pisa)
Abstract

(Joint work with P. Corvaja and D.

Masser.)

The topic of the talk arises from the

Manin-Mumford conjecture and its extensions, where we shall

focus on the case of (complex connected) commutative

algebraic groups $G$ of dimension $2$. The `Manin-Mumford'

context in these cases predicts finiteness for the set of

torsion points in an algebraic curve inside $G$, unless the

curve is of `special' type, i.e. a translate of an algebraic

subgroup of $G$.

In the talk we shall consider not merely the set of torsion

points, but its topological closure in $G$ (which turns out

to be also the maximal compact subgroup). In the case of

abelian varieties this closure is the whole space, but this is

not so for other $G$; actually, we shall prove that in certain

cases (where a natural dimensional condition is fulfilled) the

intersection of this larger set with a non-special curve

must still be a finite set.

We shall conclude by stating in brief some extensions of

this problem to higher dimensions.

Thu, 10 Nov 2011

16:00 - 17:00
L3

A hyperbolic Ax-Lindemann theorem in the cocompact case

Andrei Yafaev (UCL)
Abstract

This is a joint work with Emmanuel Ullmo.

This work is motivated by J.Pila's strategy to prove the Andre-Oort conjecture. One ingredient in the strategy is the following

conjecture:

Let S be a Shimura variety uniformised by a symmetric space X.

Let V be an algebraic subvariety of S. Maximal algebraic subvarieties of the preimage of V in X are precisely the

components of the preimages of weakly special subvarieties contained in V.

We will explain the proof of this conjecture in the case where S is compact.

Thu, 03 Nov 2011

16:00 - 17:00
L3

Lower bounds for CM points and torsion in class groups

Jacob Tsimerman (Harvard)
Abstract

Let $x$ be a CM point in the moduli space $\mathcal{A}_g(\mathbb{C})$ of principally

polarized complex abelian varieties of genus $g$, corresponding to an

Abelian variety $A$ with complex multiplication by a ring $R$. Edixhoven

conjectured that the size of the Galois orbit of x should grow at least

like a power of the discriminant ${\rm Disc}(R)$ of $R$. For $g=1$, this reduces to the

classical Brauer-Siegel theorem. A positive answer to this conjecture

would be very useful in proving the Andr\'e-Oort conjecture unconditionally.

We will present a proof of the conjectured lower bounds in some special

cases, including $g\le 6$. Along the way we derive transfer principles for

torsion in class groups of different fields which may be interesting in

their own right.

Thu, 20 Oct 2011
16:00
L3

Nodal length fluctuations for arithmetic random waves

Igor Wigman
(Cardiff University)
Abstract

Using the spectral multiplicities of the standard torus, we
endow the Laplace eigenspaces with Gaussian probability measures.
This induces a notion of random Gaussian eigenfunctions
on the torus ("arithmetic random waves''.)  We study the
distribution of the nodal length of random Laplace eigenfunctions for high
eigenvalues,and our primary result is that the asymptotics for the variance is
non-universal, and is intimately related to the arithmetic of
lattice points lying on a circle with radius corresponding to the
energy. This work is joint with Manjunath Krishnapur and Par Kurlberg

Thu, 23 Jun 2011

16:00 - 17:00
L3

Linear Combinations of L-functions

Chris Hughes
(York)
Abstract

If two L-functions are added together, the Euler product is destroyed.

Thus the linear combination is not an L-function, and hence we should

not expect a Riemann Hypothesis for it. This is indeed the case: Not

all the zeros of linear combinations of L-functions lie on the

critical line.

However, if the two L-functions have the same functional equation then

almost all the zeros do lie on the critical line. This is not seen

when they have different functional equations.

We will discuss these results (which are due to Bombieri and Hejhal)

during the talk, and demonstrate them using characteristic polynomials

of random unitary matrices, where similar phenomena are observed. If

the two matrices have the same determinant, almost all the zeros of

linear combinations of characteristic polynomials lie on the unit

circle, whereas if they have different determinants all the zeros lie

off the unit circle.

Thu, 09 Jun 2011
16:00
L3

Unlikely intersections for algebraic curves.

David Masser
Abstract

In the last twelve years there has been much study of what happens when an algebraic curve in $n$-space is intersected with two multiplicative relations $x_1^{a_1} \cdots x_n^{a_n}~=~x_1^{b_1} \cdots x_n^{b_n}~=~1 \eqno(\times)$ for $(a_1, \ldots ,a_n),(b_1,\ldots, b_n)$ linearly independent in ${\bf Z}^n$. Usually the intersection with the union of all $(\times)$ is at most finite, at least in zero characteristic. In Oxford nearly three years ago I could treat a special curve in positive characteristic. Since then there have been a number of advances, even for additive relations $\alpha_1x_1+\cdots+\alpha_nx_n~=~\beta_1x_1+\cdots+\beta_nx_n~=~0 \eqno(+)$ provided some extra structure of Drinfeld type is supplied. After reviewing the zero characteristic situation, I will describe recent work, some with Dale Brownawell, for $(\times)$ and for $(+)$ with Frobenius Modules and Carlitz Modules.

Thu, 09 Jun 2011

16:00 - 17:00
L3

TBA

David Masser
(Basel)
Thu, 02 Jun 2011

16:00 - 17:00

Class invariants for quartic CM-fields

Marco Streng
(Warwick)
Abstract

I show how invariants of curves of genus 2 can be used for explicitly constructing class fields of

certain number fields of degree 4.

Thu, 26 May 2011

16:00 - 17:00
L3

Iwasawa theory for modular forms

David Loeffler
(Warwick)
Abstract

he Iwasawa theory of elliptic curves over the rationals, and more
generally of modular forms, has mostly been studied with the
assumption that the form is "ordinary" at p -- i.e. that the Hecke
eigenvalue is a p-adic unit. When this is the case, the dual of the
p-Selmer group over the cyclotomic tower is a torsion module over the
Iwasawa algebra, and it is known in most cases (by work of Kato and
Skinner-Urban) that the characteristic ideal of this module is
generated by the p-adic L-function of the modular form.

I'll talk about the supersingular (good non-ordinary) case, where
things are slightly more complicated: the dual Selmer group has
positive rank, so its characteristic ideal is zero; and the p-adic
L-function is unbounded and hence doesn't lie in the Iwasawa algebra.
Under the rather restrictive hypothesis that the Hecke eigenvalue is
actually zero, Kobayashi, Pollack and Lei have shown how to decompose
the L-function as a linear combination of Iwasawa functions and
explicit "logarithm-like" series, and to modify the definition of the
Selmer group correspondingly, in order to formulate a main conjecture
(and prove one inclusion). I will describe joint work with Antonio Lei
and Sarah Zerbes where we extend this to general supersingular modular
forms, using methods from p-adic Hodge theory. Our work also gives
rise to new phenomena in the ordinary case: a somewhat mysterious
second Selmer group and L-function, which is related to the
"critical-slope L-function" studied by Pollack-Stevens and Bellaiche.


Thu, 12 May 2011

16:00 - 17:00
L3

Ribet points on semi-abelian varieties : a nest for counterexamples

Daniel Bertrand
(Paris)
Abstract

The points in question can be found on any semi-abelian surface over an

elliptic curve with complex multiplication. We will show that they provide

counter-examples to natural expectations in a variety of fields : Galois

representations (following K. Ribet's initial study from the 80's),

Lehmer's problem on heights, and more recently, the relative analogue of

the Manin-Mumford conjecture. However, they do support Pink's general

conjecture on special subvarieties of mixed Shimura varieties.

Thu, 10 Feb 2011

16:00 - 17:00
L3

Applications of nilsequences to number theory

Ben Green
(Cambridge)
Abstract

I will introduce the notion of a nilsequence, which is a kind of

"higher" analogue of the exponentials used in classical Fourier analysis. I

will summarise the current state of our understanding of these objects. Then

I will discuss a variety of applications: to solving linear equations in

primes (joint with T. Tao), to a version of Waring's problem for so-called

generalised polynomials (joint with V. Neale and Trevor Wooley) and to

solving certain pairs of diagonal quadratic equations in eight variables

(joint work with L. Matthiesen). Some of the work to be described is a

little preliminary!

Thu, 03 Feb 2011

16:00 - 17:00
L3

Constructing Abelian Varieties over $\overline{\mbthbb{Q}}$ Not Isogenous to a Jacobian

Jacob Tsimerman
(Princeton University)
Abstract

We discuss the following question of Nick Katz and Frans Oort: Given an

Algebraically closed field K , is there an Abelian variety over K of

dimension g which is not isogenous to a Jacobian? For K the complex

numbers

its easy to see that the answer is yes for g>3 using measure theory, but

over a countable field like $\overline{\mbthbb{Q}}$ new methods are required. Building on

work

of Chai-Oort, we show that, as expected, such Abelian varieties exist for

$K=\overline{\mbthbb{Q}}$ and g>3 . We will explain the proof as well as its connection to

the

Andre Oort conjecture.

Thu, 18 Nov 2010

16:00 - 17:00
L3

On Nahm's conjecture

Dr S Zwegers
(University College, Dublin)
Abstract

We consider certain q-series depending on parameters (A,B,C), where A is

a positive definite r times r matrix, B is a r-vector and C is a scalar,

and ask when these q-series are modular forms. Werner Nahm (DIAS) has

formulated a partial answer to this question: he conjectured a criterion

for which A's can occur, in terms of torsion in the Bloch group. For the

case r=1, the conjecture has been show to hold by Don Zagier (MPIM and

CdF). For r=2, Masha Vlasenko (MPIM) has recently found a

counterexample. In this talk we'll discuss various aspects of Nahm's conjecture.

Thu, 28 Oct 2010

16:00 - 17:00
L3

Distributions of lattices, class numbers and discriminants

Dr M. Belolipetsky
(University of Durham)
Abstract

While studying growth of lattices in semisimple Lie groups we

encounter many interesting number theoretic problems. In some cases we

can show an equivalence between the two classes of problems, while in

the other the true relation between them is unclear. On the talk I

will give a brief overview of the subject and will then try to focus

on some particularly interesting examples.

Thu, 21 Oct 2010

16:00 - 17:00
L3

Almost prime points on homogeneous varieties

Dr A Gorodnik
(Bristol)
Abstract

Given a polynomial function f defined on a variety X,

we consider two questions, which are non-commutative analogues

of the Prime Number Theorem and the Linnik Theorem:

- how often the values of f(x) at integral points in X are almost prime?

- can one effectively solve the congruence equation f(x)=b (mod q)

with f(x) being almost prime?

We discuss a solution to these questions when X is a homogeneous

variety (e.g, a quadratic surface).

Thu, 14 Oct 2010

16:00 - 17:00
L3

Generators for Rational Points on Cubic Surfaces

Dr S Siksek
(Dept. Mathematics, University of Warwick)
Abstract

Let C be a smooth plane cubic curve over the rationals. The Mordell--Weil Theorem can be restated as follows: there is a finite subset B of rational points such that all rational points can be obtained from this subset by successive tangent and secant constructions. It is conjectured that a minimal such B can be arbitrarily large; this is indeed the well-known conjecture that there are elliptic curves with arbitrarily large ranks. This talk is concerned with the corresponding problem for cubic surfaces.