Forthcoming events in this series


Thu, 04 Jun 2009
16:00
L3

Structure of some integral Galois representations

Alex Bartel
(Cambridge)
Abstract

Artin formalism gives an equality of certain L-functions of elliptic curves or of zeta-functions of number fields. When combined with the Birch and Swinnerton-Dyer conjecture, this can give interesting results about the Galois module structure of the Selmer group of an elliptic curve. When combined with the analytic class number formula, this can help determine the Galois module structure of the group of units of a number field. In this talk, I will introduce the main technique, which is completely representation theoretic, for extracting such information

Thu, 28 May 2009
16:00
L3

Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture

Werner Bley
(Kassel)
Abstract

In the first part of the talk we briefly describe an algorithm which computes a relative algebraic K-group as an abstract abelian group. We also show how this representation can be used to do computations in these groups. This is joint work with Steve Wilson.

Our motivation for this project originates from the study of the Equivariant Tamagawa Number Conjecture which is formulated as an equality of an analytic and an algebraic element in a relative algebraic K-group. As a first application we give some numerical evidence for ETNC in the case of the base change of an elliptic curve defined over the rational numbers. In this special case ETNC is an equivariant version of the Birch and Swinnerton-Dyer conjecture

Thu, 05 Mar 2009
16:00
L3

Recent variants and applications of the arithmetic large sieve

Emmanuel Kowalski
(Zurich)
Abstract

The "large sieve" was invented by Linnik in order to attack problems involving the distribution of integers subject to certain constraints modulo primes, for which earlier methods of sieve theory were not suitable. Recently, the arithmetic large sieve inequality has been found to be capable of much wider application, and has been used to obtain results involving objects not usually considered as related to sieve theory. A form of the general sieve setting will be presented, together with sample applications; those may involve arithmetic properties of random walks on discrete groups, zeta functions over finite fields, modular forms, or even random groups.