Forthcoming events in this series


Tue, 26 Jan 2021
14:30
Virtual

The construction of stable and div-free finite elements via Stokes complexes

Duygu Sap
(Department of Engineering Science University of Oxford)
Abstract
In this talk, we describe the methodology for constructing a divergence-free and stable pair of finite element spaces for the Stokes problem on cubical meshes of arbitrary dimension. We use the Stokes complex as a guiding tool. We state and exemplify the general procedure for deriving a divergence-free and stable finite element discretization from a Stokes complex. However, we develop a new strategy to prove the necessary inf-sup stability condition due to the lack of a Fortin operator. In particular, we first derive a local inf-sup condition with imposed boundary conditions and then translate this result to the global level by exploiting the element's degrees of freedom. Furthermore, we derive reduced finite elements with less global degrees of freedom. We show that the optimal order of convergence is achieved via both the original and reduced finite elements for the velocity approximation, and the pressure approximation is of optimal order when the reduced finite elements are used.
 
Ref. Stokes elements on cubic meshes yielding divergence-free approximations, M. Neilan and D. Sap, Calcolo, 53(3):263-283, 2016. 
 
--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Tue, 26 Jan 2021
14:00
Virtual

Preconditioners for computing multiple solutions in three-dimensional fluid topology optimisation

John Papadopoulos
(Mathematical Institute)
Abstract

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE, volume, and box constraints. The optimisation problem is normally nonconvex and can support multiple local minima. In recent work [1], the authors developed an algorithm for systematically discovering multiple minima of two-dimensional problems through a combination of barrier methods, active-set strategies, and deflation. The bottleneck of the algorithm is solving the Newton systems that arise. In this talk, we will present preconditioning methods for these linear systems as they occur in the topology optimization of Stokes flow. The strategies involve a mix of block preconditioning and specialized multigrid relaxation schemes that reduce the computational work required and allow the application of the algorithm to three-dimensional problems.

[1] “Computing multiple solutions of topology optimization problems”, I. P. A. Papadopoulos, P. E. Farrell, T. M. Surowiec, 2020, https://arxiv.org/abs/2004.11797

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 01 Dec 2020
14:30
Virtual

Binary matrix factorisation via column generation

Reka Kovacs
(Mathematical Institute)
Abstract

Identifying discrete patterns in binary data is an important dimensionality reduction tool in machine learning and data mining. In this paper, we consider the problem of low-rank binary matrix factorisation (BMF) under Boolean arithmetic. Due to the NP-hardness of this problem, most previous attempts rely on heuristic techniques. We formulate the problem as a mixed integer linear program and use a large scale optimisation technique of column generation to solve it without the need of heuristic pattern mining. Our approach focuses on accuracy and on the provision of optimality guarantees. Experimental results on real world datasets demonstrate that our proposed method is effective at producing highly accurate factorisations and improves on the previously available best known results for 16 out of 24 problem instances.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 01 Dec 2020
14:00
Virtual

A geometric approach to constrained optimisation

Mario Lezcano
(Mathematical Institute)
Abstract

In this talk, we will present an approach to constrained optimisation when the set of constraints is a smooth manifold. This setting is of particular interest in data science applications, as many interesting sets of matrices have a manifold structure. We will show how we may couple classic ideas from differential geometry with modern methods such as autodifferentiation to simplify optimisation problems from spaces with a difficult topology (e.g. problems with orthogonal or fixed-rank constraints) to problems on ℝⁿ where we can use any classical optimisation methods to solve them. We will also show how to use these methods to automatically compute quantities such as the Riemannian gradient and Hessian. We will present the library GeoTorch that allows for putting these kind of constraints within models written in PyTorch by adding just one line to the model. We will also comment on some convergence results if time allows.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 17 Nov 2020
14:00
Virtual

Full operator preconditioning and accuracy of solving linear systems

Stephan Mohr
(Mathematical Institute)
Abstract

Preconditioning techniques are widely used for speeding up the iterative solution of systems of linear equations, often by transforming the system into one with lower condition number. Even though the condition number also serves as the determining constant in simple bounds for the numerical error of the solution, simple experiments and bounds show that such preconditioning on the matrix level is not guaranteed to reduce this error. Transformations on the operator level, on the other hand, improve both accuracy and speed of iterative methods as predicted by the change of the condition number. We propose to investigate such methods under a common framework, which we call full operator preconditioning, and show practical examples.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send an email to @email.

Tue, 03 Nov 2020
14:30
Virtual

Rational neural networks

Nicolas Boullé
(Mathematical Institute (University of Oxford))
Abstract

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Tue, 03 Nov 2020
14:00
Virtual

Fast randomized numerical rank estimation

Maike Meier
(Mathematical Institute (University of Oxford))
Abstract

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

 

Tue, 20 Oct 2020
14:30
Virtual

A double Landau-de Gennes mathematical model of smectic A liquid crystals

Jingmin Xia
(Mathematical Institute (University of Oxford))
Abstract

Smectic A liquid crystals are of great interest in physics for their striking defect structures, including curvature walls and focal conics. However, the mathematical modeling of smectic liquid crystals has not been extensively studied. This work takes a step forward in understanding these fascinating topological defects from both mathematical and numerical viewpoints. In this talk, we propose a new (two- and three-dimensional) mathematical continuum model for the transition between the smectic A and nematic phases, based on a real-valued smectic order parameter for the density perturbation and a tensor-valued nematic order parameter for the orientation. Our work expands on an idea mentioned by Ball & Bedford (2015). By doing so, physical head-to-tail symmetry in half charge defects is respected, which is not possible with vector-valued nematic order parameter.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Tue, 20 Oct 2020
14:00
Virtual

Stochastic rounding for parabolic PDEs in half precision

Matteo Croci
(Mathematical Institute (University of Oxford))
Abstract

Motivated by the advent of machine learning, the last few years saw the return of hardware-supported low-precision computing. Computations with fewer digits are faster and more memory and energy efficient, but can be extremely susceptible to rounding errors. An application that can largely benefit from the advantages of low-precision computing is the numerical solution of partial differential equations (PDEs), but a careful implementation and rounding error analysis are required to ensure that sensible results can still be obtained. In this talk we study the accumulation of rounding errors in the solution of the heat equation, a proxy for parabolic PDEs, via Runge-Kutta finite difference methods using round-to-nearest (RtN) and stochastic rounding (SR). We demonstrate how to implement the numerical scheme to reduce rounding errors and we present \emph{a priori} estimates for local and global rounding errors. Let $u$ be the roundoff unit. While the worst-case local errors are $O(u)$ with respect to the discretization parameters, the RtN and SR error behaviour is substantially different. We show that the RtN solution is discretization, initial condition and precision dependent, and always stagnates for small enough $\Delta t$. Until stagnation, the global error grows like $O(u\Delta t^{-1})$. In contrast, the leading order errors introduced by SR are zero-mean, independent in space and mean-independent in time, making SR resilient to stagnation and rounding error accumulation. In fact, we prove that for SR the global rounding errors are only $O(u\Delta t^{-1/4})$ in 1D and are essentially bounded (up to logarithmic factors) in higher dimensions.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to @email.

Tue, 10 Mar 2020
14:30
L2

Random smoothies: C-infinity but nowhere analytic

Nick Trefethen
Abstract

Since Weierstrass it has been known that there are functions that are continuous but nowhere differentiable.  A beautiful example (with probability 1) is any Brownian path.  Brownian paths can be constructed either in space, via Brownian bridge, or in Fourier space, via random Fourier series.

What about functions, which we call "smoothies", that are $C^\infty$ but nowhere analytic?  This case is less familiar but analogous, and again one can do the construction either in space or Fourier space.  We present the ideas and illustrate them with the new Chebfun $\tt{smoothie}$ command.  In the complex plane, the same idea gives functions analytic in the open unit disk and $C^\infty$ on the unit circle, which is a natural boundary.

Tue, 10 Mar 2020
14:00
L2

Motion correction methods for undersampled 3D imaging

Joseph Field
(Oxford)
Abstract

Reconstruction of 3D images from a set of 2D X-ray projections is a standard inverse problem, particularly in medical imaging. Improvements in imaging technologies have enabled the development of a flat-panel X-ray source, comprised of an array of low-power emitters that are fired in quick succession. During a complete firing sequence, there may be shifts in the patient’s resting position which ultimately create artifacts in the final reconstruction. We present a method for correcting images with respect to unknown body motion, focusing on the case of simple rigid body motion. Image reconstructions are obtained by solving a sparse linear inverse problem, with respect to not only the underlying body but also the unknown velocity. Results find that reconstructions of a moving body can be much better than those obtained by measuring a stationary body, as long as the underlying motion is well approximated.

Tue, 03 Mar 2020
14:30
L2

Stochastic rounding: effect on linear algebra operations and application to time-dependent PDEs

Matteo Croci
(Oxford)
Abstract

The standard rounding procedure in floating-point computations is round to nearest (RN). In this talk we consider an alternative rounding strategy called stochastic rounding (SR) which has the appealing property of being exact (actually exact!) in expectation. In the first part of the talk we discuss recent developments in probabilistic rounding error analysis and we show how rounding errors grow at an O(\sqrt{n}) rate rather than O(n) when SR is employed. This shows that Wilkinson's rule of thumb provably holds for this type of rounding. In the second part of the talk we consider the application of SR to parabolic PDEs admitting a steady state solution. We show that when the heat equation is solved in half precision RN fails to compute an accurate solution, while SR successfully solves the problem to decent accuracy.
 

Tue, 03 Mar 2020
14:00
L2

Deterministic Dynamic Pricing via Iterative Quadratic Programming

Jari Fowkes
(Oxford)
Abstract

We consider the problem of dynamically pricing multiple products on a network of resources, such as that faced by an airline selling tickets on its route network. For computational reasons this inherently stochastic problem is often approximated deterministically, however even the deterministic dynamic pricing problem can be impractical to solve. For this reason we have derived a novel iterative Quadratic Programming approximation to the deterministic dynamic pricing problem that is not only very fast to solve in practice but also exhibits a provably linear rate of convergence. This is joint work with Saksham Jain and Raphael Hauser.
 

Tue, 25 Feb 2020
14:30
L2

Low-rank plus sparse matrices: ill-posedness and guaranteed recovery

Simon Vary
(Oxford)
Abstract

Robust principal component analysis and low-rank matrix completion are extensions of PCA that allow for outliers and missing entries, respectively. Solving these problems requires a low coherence between the low-rank matrix and the canonical basis. However, in both problems the well-posedness issue is even more fundamental; in some cases, both Robust PCA and matrix completion can fail to have any solutions due to the fact that the set of low-rank plus sparse matrices is not closed. Another consequence of this fact is that the lower restricted isometry property (RIP) bound cannot be satisfied for some low-rank plus sparse matrices unless further restrictions are imposed on the constituents. By restricting the energy of one of the components, we close the set and are able to derive the RIP over the set of low rank plus sparse matrices and operators satisfying concentration of measure inequalities. We show that the RIP of an operator implies exact recovery of a low-rank plus sparse matrix is possible with computationally tractable algorithms such as convex relaxations or line-search methods. We propose two efficient iterative methods called Normalized Iterative Hard Thresholding (NIHT) and Normalized Alternative Hard Thresholding (NAHT) that provably recover a low-rank plus sparse matrix from subsampled measurements taken by an operator satisfying the RIP.
 

Tue, 25 Feb 2020
14:00
L2

Fast and stable randomized low-rank matrix approximation

Yuji Nakatsukasa
(Oxford)
Abstract

Randomized SVD has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson (who is speaking twice this week), and Tropp (SIREV 2011) contains extensive analysis, and made it a very popular method. 
The complexity for $m\times n$ matrices is $O(Nr+(m+n)r^2)$ where $N$ is the cost of a (fast) matrix-vector multiplication; which becomes $O(mn\log n+(m+n)r^2)$ for dense matrices. This work uses classical results in numerical linear algebra to reduce the computational cost to $O(Nr)$ without sacrificing numerical stability. The cost is essentially optimal for many classes of matrices, including $O(mn\log n)$ for dense matrices. The method can also be adapted for updating, downdating and perturbing the matrix, and is especially efficient relative to previous algorithms for such purposes.  

 

Tue, 18 Feb 2020
14:30
L5

An element-based preconditioner for mixed finite element problems

Michael Wathen
(Rutherford Appleton Laboratory)
Abstract

We introduce a new and generic approximation to Schur complements arising from inf-sup stable mixed finite element discretizations of self-adjoint multi-physics problems. The approximation exploits the discretization mesh by forming local, or element, Schur complements and projecting them back to the global degrees of freedom. The resulting Schur complement approximation is sparse, has low construction cost (with the same order of operations as a general finite element matrix), and can be solved using off-the-shelf techniques, such as multigrid. Using the Ladyshenskaja-Babu\v{s}ka-Brezzi condition, we show that this approximation has favorable eigenvalue distributions with respect to the global Schur complement. We present several numerical results to demonstrate the viability of this approach on a range of applications. Interestingly, numerical results show that the method gives an effective approximation to the non-symmetric Schur complement from the steady state Navier-Stokes equations.
 

Tue, 18 Feb 2020
14:00
L5

FitBenchmarking: A tool for comparing fitting routines for our National Facilities (and beyond)

Tyrone Rees
(Rutherford Appleton Laboratory)
Abstract

In STFC's Computational Mathematics Group, we work alongside scientists at large-scale National Facilities, such as ISIS Neutron and Muon source, Diamond Light Source, and the Central Laser Facility. For each of these groups, non-linear least squares fitting is a vital part of their scientific workflow. In this talk I will describe FitBenchmarking, a software tool we have developed to benchmark the performance of different non-linear least squares solvers on real-world data. It is designed to be easily extended, so that new data formats and new minimizers can be added. FitBenchmarking will allow (i) scientists to determine objectively which fitting engine is optimal for solving their problem on their computing architecture, (ii) scientific software developers to quickly test state-of-the-art algorithms in their data analysis software, and (iii) mathematicians and numerical software developers to test novel algorithms against realistic datasets, and to highlight characteristics of problems where the current best algorithms are not sufficient.
 

Tue, 11 Feb 2020
14:30
L5

Adaptive Cubic Regularisation Methods under Dynamic Inexact Hessian Information for Nonconvex Optimisation

Gianmarco Gurioli
(Università di Firenze)
Abstract

ARC methods are Newton-type solvers for unconstrained, possibly nonconvex, optimisation problems. In this context, a novel variant based on dynamic inexact Hessian information is discussed. The approach preserves the optimal complexity of the basic framework and the main probabilistic results on the complexity and convergence analysis in the finite-sum minimisation setting will be shown. At the end, some numerical tests on machine learning problems, ill-conditioned databases and real-life applications will be given, in order to confirm the theoretical achievements. Joint work with Stefania Bellavia and Benedetta Morini (Università di Firenze). 

Tue, 04 Feb 2020
14:30
L5

Lightning Laplace and Stokes solvers

Pablo Brubeck
(Oxford)
Abstract

We extend the lightning Laplace solver (Gopal and Trefethen, SINUM 2019) to unbounded domains and to the biharmonic equation. Illustrating the high accuracy of such methods, we get beautiful contour plots of Moffatt eddies.

Tue, 04 Feb 2020
14:00
L5

Matrix Factorization with Expander Graphs

Michael Murray
(Oxford)
Abstract

Many computational techniques in data science involve the factorization of a data matrix into the product of two or more structured matrices. Examples include PCA, which relies on computing an SVD, recommendation systems, which leverage non-negative matrix factorization, infilling missing entries with low rank matrix completion, and finding sparse representations via dictionary learning. In our work we study a new matrix factorization problem, involving the recovery of $\textbf{A}$ and $\textbf{X}$ from $\textbf{Y} := \textbf{A}\textbf{X}$ under the following assumptions; $\textbf{A}$ is an $m \times n$ sparse binary matrix with a fixed number $d$ of nonzeros per column and $\textbf{X}$ is an $n \times N$ sparse real matrix whose columns have $k$ nonzeros and are dissociated. This setup is inspired and motivated by similar models studied in the dictionary learning literature as well as potential connections both with stochastic block models and combinatorial compressed sensing. In this talk we present a new algorithm, EBR, for solving this problem, as well as recovery guarantees in the context of a particular probabilistic data model. Using the properties of expander graphs we are able to show, under certain assumptions, that with just $N = \textit{O}( \log^2(n))$ samples then EBR recovers the factorization up to permutation with high probability. 

Tue, 28 Jan 2020
14:30
L5

Dimensionality reduction techniques for global optimization

Adilet Otemissov
(Oxford)
Abstract

We show that the scalability challenges of Global Optimisation algorithms can be overcome for functions with low effective dimensionality, which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations. We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al. (2016). Using tools from random matrix theory and conic integral geometry, we investigate the efficacy and convergence of our random subspace embeddings approach, in a static and/or adaptive formulation. We illustrate our algorithmic proposals and theoretical findings numerically, using state of the art global solvers. This work is joint with Coralia Cartis.
 

Tue, 28 Jan 2020
14:00
L5

Stable Computation of Generalized Polar Decompositions

Carolin Penke
(MPI-Magdeburg)
Abstract

The QDWH algorithm can compute the polar decomposition of a matrix in a stable and efficient way. We generalize this method in order to compute generalized polar decompositions with respect to signature matrices. Here, the role of the QR decomposition is played by the hyperbolic QR decomposition. However, it doesn't show the same favorable properties concerning stability as its orthogonal counterpart. Remedies are found by exploiting connections to the LDL^T factorization and by employing well-conditioned permuted graph bases. The computed polar decomposition is used to formulate a structure-preserving spectral divide-and-conquer method for pseudosymmetric matrices. Applications of this method are found in computational quantum physics, where eigenvalues and eigenvectors describe optical properties of condensed matter or molecules. Additional properties guarantee fast convergence and a reduction to symmetric definite eigenvalue problems after just one step of spectral divide-and-conquer.

Tue, 21 Jan 2020
14:30
L5

Nonlinear Subspace Correction Methods

Thomas Roy
(Oxford)
Abstract

Subspace correction (SSC) methods are based on a "divide and conquer" strategy, where a global problem is divided into a sequence of local ones. This framework includes iterative methods such as Jacobi iteration, domain decomposition, and multigrid methods. We are interested in nonlinear PDEs exhibiting highly localized nonlinearities, for which Newton's method can take many iterations. Instead of doing all this global work, nonlinear SSC methods tackle the localized nonlinearities within subproblems. In this presentation, we describe the SSC framework, and investigate combining Newton's method with nonlinear SSC methods to solve a regularized Stefan problem.