Forthcoming events in this series


Tue, 04 Feb 2014

14:00 - 14:30
L5

Composite Dilation Wavelets

Jeffrey D. Blanchard
(Grinnell College)
Abstract

Composite dilation wavelets are affine systems which extend the notion of wavelets by incorporating a second set of dilations.  The addition of a second set of dilations allows the composite system to capture directional information in addition to time and frequency information.  We classify admissible dilation groups at two extremes: frequency localization through minimally supported frequency composite dilation wavelets and time localization through crystallographic Haar-type composite dilation wavelets. 

Tue, 28 Jan 2014

14:30 - 15:00
L5

An algorithm for the convolution of Legendre expansions

Nick Hale
(University of Oxford)
Abstract

Convolution is widely-used and fundamental mathematical operation
in signal processing, statistics, and PDE theory.

Unfortunately the CONV() method in Chebfun for convolving two chebfun 
objects has long been one of the most disappointingly slow features of 
the project. In this talk we will present a new algorithm, which shows 
performance gains on the order of a factor 100.

The key components of the new algorithm are:
* a convolution theorem for Legendre polynomials 
* recurrence relations satisfied by spherical Bessel functions
* recent developments in fast Chebyshev-Legendre transforms [1]

Time-permitting, we shall end with an application from statistics,
using the fact that the probability distribution of the sum of two 
independent random variables is the convolution of their individual 
distributions.

[1] N. Hale and A. Townsend, "A fast, simple, and stable Chebyshev-
Legendre transform using an asymptotic formula”, SISC (to appear).

Tue, 28 Jan 2014

14:00 - 14:30
L5

Preconditioning and deflation techniques for interior point methods

Rachael Tappenden
(University of Edinburgh)
Abstract

The accurate and efficient solution of linear systems $Ax=b$ is very important in many engineering and technological applications, and systems of this form also arise as subproblems within other algorithms. In particular, this is true for interior point methods (IPM), where the Newton system must be solved to find the search direction at each iteration. Solving this system is a computational bottleneck of an IPM, and in this talk I will explain how preconditioning and deflation techniques can be used, to lessen this computational burden.  This work is joint with Jacek Gondzio.

Tue, 21 Jan 2014

14:00 - 15:00
L5

Numerical solution of Hamilton—Jacobi—Bellman equations

Iain Smears
(University of Oxford)
Abstract

Hamilton—Jacobi—Bellman (HJB) equations are a class of fully nonlinear second-order partial differential equations (PDE) of elliptic or parabolic type that originate from Stochastic Optimal Control Theory. These PDE are fully nonlinear in the sense that the nonlinear terms include the second partial derivatives of the unknown solution; this strong nonlinearity severely restricts the range of numerical methods that are known to be convergent. These problems have traditionally been solved with low order monotone schemes, often of finite difference type, which feature certain limitations in terms of efficiency and practicability.
In this summary talk of my DPhil studies, we will be interested in the development of hp-version discontinuous Galerkin finite element methods (DGFEM) for the class of HJB equations that satisfy a Cordès condition. First, we will show the novel techniques of analysis used to find a stable and convergent scheme in the elliptic setting, and then we will present recent work on their extension to parabolic problems. The resulting method is very nonstandard, provably of high order, and it even allows for exponential convergence under hp-refinement. We present numerical experiments showing the accuracy, computational efficiency and flexibility of the scheme
Tue, 26 Nov 2013

14:30 - 15:00
L5

Small dot, big challenging: on the new benchmark of Top500 and Green500

Shengxin (Jude) Zhu
(University of Oxford)
Abstract

A new benchmark, High Performance Conjugate Gradient (HPCG), finally was introduced recently for the Top500 list and the Green500 list. This will draw more attention to performance of sparse iterative solvers on distributed supercomputers and energy efficiency of hardware and software. At the same time, this will more widely promote the concept that communications are the bottleneck of performance of iterative solvers on distributed supercomputers, here we will go a little deeper, discussing components of communications and discuss which part takes a dominate share. Also discussed are mathematics tricks to detect some metrics of an underlying supercomputer.

Tue, 26 Nov 2013

14:00 - 14:30
L5

Novel numerical techniques for magma dynamics

Sander Rhebergen
(University of Oxford)
Abstract

We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretizations. The ability to easily scale codes to three dimensions with large meshes means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction.  This work is joint with Andrew Wathen and Richard Katz from the University of Oxford and Laura Alisic, John Rudge and Garth Wells from the University of Cambridge.

Tue, 19 Nov 2013

14:30 - 15:00
L5

The antitriangular factorisation of saddle point matrices

Jennifer Pestana
(University of Oxford)
Abstract

The antitriangular factorisation of real symmetric indefinite matrices recently proposed by Mastronardi and van Dooren has several pleasing properties. It is backward stable, preserves eigenvalues and reveals the inertia, that is, the number of positive, zero and negative eigenvalues. 

In this talk we show that the antitriangular factorization simplifies for saddle point matrices, and that solving a saddle point system in antitriangular form is equivalent to applying the well-known nullspace method. We obtain eigenvalue bounds for the saddle point matrix and discuss the role of the factorisation in preconditioning. 

Tue, 19 Nov 2013

14:00 - 14:30
L5

Finding integral points on curves via numerical (p-adic) integration: a number theorist's perspective

Jennifer Balakrishnan
(University of Oxford)
Abstract

From cryptography to the proof of Fermat's Last Theorem, elliptic curves (those curves of the form y^2 = x^3 + ax+b) are ubiquitous in modern number theory.  In particular, much activity is focused on developing techniques to discover rational points on these curves. It turns out that finding a rational point on an elliptic curve is very much like finding the proverbial needle in the haystack -- in fact, there is currently no algorithm known to completely determine the group of rational points on an arbitrary elliptic curve.


 I'll introduce the ''real'' picture of elliptic curves and discuss why the ambient real points of these curves seem to tell us little about finding rational points. I'll summarize some of the story of elliptic curves over finite and p-adic fields and tell you about how I study integral points on (hyper)elliptic curves via p-adic integration, which relies on doing a bit of p-adic linear algebra.  Time permitting, I'll also give a short demo of some code we have to carry out these algorithms in the Sage Math Cloud.

Tue, 12 Nov 2013

14:00 - 15:00
L5

Continuous analogues of matrix factorizations

Alex Townsend
(University of Oxford)
Abstract

In this talk we explore continuous analogues of matrix factorizations.  The analogues we develop involve bivariate functions, quasimatrices (a matrix whose columns are 1D functions), and a definition of triangular in the continuous setting.  Also, we describe why direct matrix algorithms must become iterative algorithms with pivoting for functions. New applications arise for function factorizations because of the underlying assumption of continuity. One application is central to Chebfun2. 

Tue, 05 Nov 2013

14:30 - 15:00
L5

Pearcy's 1966 proof and Crouzeix's conjecture

L. Nick Trefethen
(University of Oxford)
Abstract

Crouzeix's conjecture is an exasperating problem of linear algebra that has been open since 2004: the norm of p(A) is bounded by twice the maximum value of p on the field of values of A, where A is a square matrix and p is a polynomial (or more generally an analytic function).  I'll say a few words about the conjecture and
show the beautiful proof of Pearcy in 1966 of a special case, based on a vector-valued barycentric interpolation formula.

Tue, 05 Nov 2013

14:00 - 14:30
L5

Optimal domain splitting in Chebyshev collocation

Toby Driscoll
(University of Delaware)
Abstract
Chebfun uses a simple rule, essentially a binary search, to automatically split an interval when it detects that a piecewise Chebyshev polynomial representation will be more efficient than a global one. Given the complex singularity structure of the function being approximated, one can find an optimal splitting location explicitly. It turns out that Chebfun really does get the optimal location in most cases, albeit not in the most efficient manner. In cases where the function is expensive to evaluate, such as the solution to a differential equation, it can be preferable to use Chebyshev-Padé approximation to locate the complex singularities and split accordingly. 

 

Tue, 29 Oct 2013

14:30 - 15:00
L5

Structure exploitation in Hessian computations

Patrick Farrell
(University of Oxford)
Abstract

Hessians of functionals of PDE solutions have important applications in PDE-constrained optimisation (Newton methods) and uncertainty quantification (for accelerating high-dimensional Bayesian inference).  With current techniques, a typical cost for one Hessian-vector product is 4-11 times the cost of the forward PDE solve: such high costs generally make their use in large-scale computations infeasible, as a Hessian solve or eigendecomposition would have costs of hundreds of PDE solves.

In this talk, we demonstrate that it is possible to exploit the common structure of the adjoint, tangent linear and second-order adjoint equations to greatly accelerate the computation of Hessian-vector products, by trading a large amount of computation for a large amount of storage. In some cases of practical interest, the cost of a Hessian-
vector product is reduced to a small fraction of the forward solve, making it feasible to employ sophisticated algorithms which depend on them.

Tue, 29 Oct 2013

14:00 - 14:30
L5

Quantitative sparse signal recovery guarantees of nonconvex nonsmooth first-order methods

Coralia Cartis
(University of Oxford)
Abstract

Finding a sparse signal solution of an underdetermined linear system of measurements is commonly solved in compressed sensing by convexly relaxing the sparsity requirement with the help of the l1 norm. Here, we tackle instead the original nonsmooth nonconvex l0-problem formulation using projected gradient methods. Our interest is motivated by a recent surprising numerical find that despite the perceived global optimization challenge of the l0-formulation, these simple local methods when applied to it can be as effective as first-order methods for the convex l1-problem in terms of the degree of sparsity they can recover from similar levels of undersampled measurements. We attempt here to give an analytical justification in the language of asymptotic phase transitions for this observed behaviour when Gaussian measurement matrices are employed. Our approach involves novel convergence techniques that analyse the fixed points of the algorithm and an asymptotic probabilistic analysis of the convergence conditions that derives asymptotic bounds on the extreme singular values of combinatorially many submatrices of the Gaussian measurement matrix under matrix-signal independence assumptions.

This work is joint with Andrew Thompson (Duke University, USA).

Tue, 22 Oct 2013

14:30 - 15:00
L5

Alternating minimal energy methods for linear systems in higher dimensions.

Dmitry Savostyanov
(University of Southampton)
Abstract

We propose a new algorithm for the approximate solution of large-scale high-dimensional tensor-structured linear systems. It can be applied to high-dimensional differential equations, which allow a low-parametric approximation of the multilevel matrix, right-hand side and solution in a tensor product format. We apply standard one-site tensor optimisation algorithm (ALS), but expand the tensor manifolds using the classical iterative schemes (e.g. steepest descent).  We obtain the rank--adaptive algorithm with the theoretical convergence estimate not worse than the one of the steepest descent, and fast practical convergence, comparable or even better than the convergence of more expensive two-site optimisation algorithm (DMRG).
The method is successfully applied for a high--dimensional problem of quantum chemistry, namely the NMR simulation of a large peptide.

This is a joint work with S.Dolgov (Max-Planck Institute, Leipzig, Germany), supported by RFBR and EPSRC grants.

Keywords: high--dimensional problems, tensor train format, ALS, DMRG, steepest descent, convergence rate, superfast algorithms, NMR.

Tue, 22 Oct 2013

14:00 - 14:30
L5

Existence and numerical analysis for incompressible chemically reacting fluids with $p(c(x))$-$\Delta$ structure

Petra Pustejovska
(Graz University of Technology)
Abstract

We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress depends on concentration. Namely, we consider a coupled system of the generalized Navier-Stokes equations (viscosity of power-law type with concentration dependent power index) and convection-diffusion equation with non-linear diffusivity. We focus on the existence analysis of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent (class of Sobolev-Orlicz spaces). Such results is then adapted for a suitable FEM approximation, for which the main tool of proof is a generalization of the Lipschitz approximation method.

Tue, 15 Oct 2013

14:30 - 15:00
L5

A multilevel preconditioner for the biharmonic equation

Lorenz John
(Graz University of Technology)
Abstract

We present a multilevel preconditioner for the mixed finite element discretization of the biharmonic equation of first kind. While for the interior degrees of freedom a standard multigrid methods can be applied, a different approach is required on the boundary. The construction of the preconditioner is based on a BPX type multilevel representation in fractional Sobolev spaces. Numerical examples illustrate the obtained theoretical results.

Tue, 15 Oct 2013

14:00 - 14:30
L5

Hybrid numerical-asymptotic methods for wave scattering problems

David Hewett
(Mathematics Institute)
Abstract

Linear wave scattering problems (e.g. for acoustic, electromagnetic and elastic waves) are ubiquitous in science and engineering applications. However, conventional numerical methods for such problems (e.g. FEM or BEM with piecewise polynomial basis functions) are prohibitively expensive when the wavelength of scattered wave is small compared to typical lengthscales of the scatterer (the so-called "high frequency" regime). This is because the solution possesses rapid oscillations which are expensive to capture using conventional approximation spaces. In this talk I will outline some of my recent work in the development of "hybrid numerical-asymptotic" methods, which incur significantly reduced computational cost. These methods use approximation spaces containing oscillatory basis functions, carefully chosen to capture the high frequency asymptotic behaviour. In particular I will discuss some of the interesting challenges arising from non convex, penetrable and three-dimensional scatterers.