Past OxPDE Special Seminar

1 August 2017
15:30
Abstract

Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.

The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.

The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.

In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.

The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.

 

  • OxPDE Special Seminar
1 August 2017
14:00
Abstract

Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.

The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.

As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.

The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.

In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.

The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.

In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.

  • OxPDE Special Seminar
10 February 2015
11:00
to
13:00
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

  • OxPDE Special Seminar
3 February 2015
11:00
to
13:00
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

  • OxPDE Special Seminar
21 May 2014
15:00
Dr Dominic Breit
Abstract

We consider degenerate elliptic systems like the p-Laplacian  system with p>1 and zero boundary data. The r.h.s. is given in  divergence from div F. We prove a pointwise estimate (in terms of the  sharp maximal function) bounding the gradient of the solution via the  function F. This recovers several known results about local regularity  estimates in L^q, BMO and C^a. Our pointwise inequality extends also  to boundary points. So these  regularity estimates hold globally as  well. The global estimates in BMO and C^a are new.

  • OxPDE Special Seminar
2 May 2014
17:00
Abstract

Morrey's lower semicontinuity theorem for quasiconvex integrands is a classical result that establishes the existence of minimisers to variational problems by the Direct Method, provided the integrand satisfies "standard" growth conditions (i.e. when the growth and coercivity exponents match). This theorem has more recently been refined to consider convergence in Sobolev Spaces below the growth exponent of the integrand: such results can be used to show existence of solutions to a "Relaxed minimisation problem" when we have "non-standard'" growth conditions.

When the integrand satisfies linear coercivity conditions, it is much more useful to consider the space of functions of Bounded Variation, which has better compactness properties than $W^{1,1}$. We review the key results in the standard growth case, before giving an overview of recent results that we have obtained in the non-standard case. We find that new techniques and ideas are required in this setting, which in fact provide us with some interesting (and perhaps unexpected) corollaries on the general nature of quasiconvex functions. 

  • OxPDE Special Seminar
7 March 2014
17:00
Jean Taylor
Abstract
<p>Recent experimental work has determined the atomic structure of a quasicrystalline Cd-Yb alloy. It highlights the elegant role of polyhedra with icosahedral symmetry. Other work suggests that while chunks of periodic crystals and disordered glass predominate in the solid state, there are many hints of icosahedral clusters. This talk is based on a recent Mathematical Intelligencer article on quasicrystals with Marjorie Senechal.</p> <p><br>The seminar will be followed by a drinks reception and forms part of a longer <a href="http://www.maths.ox.ac.uk/groups/oxpde/events/women-pdes">PDE and CoV related Workshop</a>.</p> <p><br>To register for the seminar and drinks reception go to&nbsp;<a href="http://doodle.com/acw6bbsp9dt5bcwb">http://doodle.com/acw6bbsp9dt5bcwb</a></p>
  • OxPDE Special Seminar

Pages