Past Partial Differential Equations Seminar

25 April 2016
16:00
Shiwu Yang
Abstract

It has been shown that there are global solutions to 
Maxwell-Klein-Gordon equations in Minkowski space with finite energy 
data. However, very little is known about the asymptotic behavior of the 
solution. In this talk, I will present recent progress on the decay 
properties of the solutions. We show the quantitative energy flux decay 
of the solutions with data merely bounded in some weighted energy space. 
The results in particular hold in the presence of large total charge. 
This is the first result that gives a complete and precise description 
of the global behavior of large nonlinear fields.
 

  • Partial Differential Equations Seminar
7 March 2016
16:00
Stefano Olla
Abstract

In acoustic materials (non null sound velocity), there is a clear separation of scale between the relaxation to mechanical equilibrium, governed by Euler equations, and the slower relaxation to thermal equilibrium, governed by heat equation if thermal conductivity is finite. In one dimension in acoustic systems, thermal conductivity is diverging and the thermal equilibrium is reached by a superdiffusion governed by a fractional heat equation. In non-acoustic materials it seems that there is not such separation of scales, and thermal and mechanical equilibriums are reached at the same time scale, governed by a Euler-Bernoulli beam equation. We prove such macroscopic behaviors in chains of oscillators with dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. (Works in collaborations with T. Komorowski).

  • Partial Differential Equations Seminar
4 March 2016
12:00
Henri Berestycki
Abstract

I will discuss some reaction-diffusion equations of bistable type motivated by biology and medicine. The aim is to understand the effect of the shape of the domain on propagation or on blocking of advancing waves. I will first describe the motivations of these questions and present a result about the existence of generalized “transition waves”. I will then discuss various geometric conditions that lead to either blocking, or partial propagation, or complete propagation. These questions involve new qualitative results for some non-linear elliptic and parabolic partial differential equations. I report here on joint work with Juliette Bouhours and Guillemette Chapuisat.

  • Partial Differential Equations Seminar
29 February 2016
16:00
David Bourne
Abstract

While it is believed that many particle systems have periodic ground states, there are few rigorous crystallization results in two and more dimensions. In this talk I will show how results by the Hungarian geometer László Fejes Tóth can be used to prove that an idealised block copolymer energy is minimised by the triangular lattice. I will also discuss a numerical method for a broader class of optimal location problems and some conjectures about minimisers in three dimensions. This is joint work with Mark Peletier, Steven Roper and Florian Theil. 

  • Partial Differential Equations Seminar
22 February 2016
16:00
Matthias Kurzke
Abstract

The Ginzburg-Landau functional serves as a model for the formation of vortices in many physical contexts. The natural gradient flow, the parabolic Ginzburg-Landau equation, converges in the limit of small vortex size and finite number of vortices to a system of ODEs. Passing to the limit of many vortices in this ODE, one can derive a mean field PDE, similar to the passage from point vortex systems to the 2D Euler equations. In the talk, I will present quantitative estimates that allow us to directly connect the parabolic GL equation to the limiting mean field PDE. In contrast to recent work by Serfaty, our work is restricted to a fairly low number of vortices, but can handle vortex sheet initial data in bounded domains. This is joint work with Daniel Spirn (University of Minnesota).

  • Partial Differential Equations Seminar
15 February 2016
16:00
Melanie Rupflin
Abstract

For maps from surfaces there is a close connection between the area of the surface parametrised by the map and its Dirichlet energy and this translates also into a relation for the corresponding critical points. As such, when trying to find minimal surfaces, one route to take is to follow a suitable gradient flow of the Dirichlet energy. In this talk I will introduce such a flow which evolves both a map and a metric on the domain in a way that is designed to change the initial data into a minimal immersions and discuss some question concerning the existence of solutions and their asymptotic behaviour. This is joint work with Peter Topping.

  • Partial Differential Equations Seminar
8 February 2016
16:00
Veronique Fischer
Abstract
In this talk, I will present some recent developments in the theory of pseudo-differential operators on Lie groups. First I will discuss why `reasonable' Lie groups are the interesting manifolds where one can develop global symbolic pseudo-differential calculi. I will also give a brief overview of the analysis in the context of Lie groups. I will conclude with some recent works developing pseudo-differential calculi on certain classes of Lie groups.
  • Partial Differential Equations Seminar

Pages