In this talk, we will discuss sequences of immersions from 2-discs into Euclidean with finite total curvature where the Willmore energy converges to zero (a minimal surface). We will show that away from finitely many concentration points of the total curvature, the surface converges strongly in $W^{2,2}$. Furthermore, we have an energy identity for the total curvature, at the concentration points after a blow-up procedure we show that there is a bubble tree consisting of complete non-compact (branched) minimal surfaces of finite total curvature which are quantised in multiples of 4\pi. We will also apply this method to the mean curvature flow, showing that sequences of surfaces that are locally converging to a self-shrinker in L^2 also develop a bubble tree of complete non-compact (branched) minimal surfaces in Euclidean space with finite total curvature quantised in multiples of 4\pi.

# Past Partial Differential Equations Seminar

Linear elasticity can be rigorously derived from finite elasticity in the case of small loadings in terms of \Gamma-convergence. This was first done by Dal Maso-Negri-Percivale in the case of one-well energies with super-quadratic growth. This has been later generalised to different settings, in particular to the case of multi-well energies where the distance between the wells is very small (comparable to the size of the load). I will discuss recent developments in the case when the distance between the wells is arbitrary. In this context linear elasticity can be derived by adding to the multi-well energy a singular higher order term which penalises jumps from one well to another. The size of the singular term has to satisfy certain scaling assumptions which turn out to be optimal. (This is joint work with Alicandro, Dal Maso and Lazzaroni.)

In this talk we will motivate and discuss several problems and results in harmonic analysis that involve some arithmetic or discrete structure. We will focus on pioneering work of Bourgain on discrete restriction theorems and pointwise ergodic theorems for arithmetic sets, their modern developments and future directions for the field.

I will discuss on the existence and regularity results for the heat flow of the so called H-systems and for more general parabolic p-laplacian problems with critical growth.

We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in an arbitrary open subset of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calderón problem. This is a joint work with T. Ghosh (HKUST) and G. Uhlmann (Washington).

In this talk we consider particular solutions of the Boltzmann equation which have the form $f (x,v,t) = g (v − M (t)x,t)$ where $M (t) = A(I + tA)^{−1}$ with the matrix $A$ describing a shear ﬂow or a dilatation or a combination of both. These solutions are known as equidispersive solutions. We will show that, for diﬀerent choices for the matrix A and for diﬀerent homogeneities of the collision kernel, we obtain diﬀerent long time asymptotics for the corresponding equidispersive solutions. In particular we will focus on the case of simple shear ﬂow and prove rigorously the existence of self-similar solutions with exponentially increasing internal energy.