Past Partial Differential Equations Seminar

6 February 2017
16:00
Abstract

In this talk, we will discuss sequences of immersions from 2-discs into Euclidean with finite total curvature where the Willmore energy converges to zero (a minimal surface). We will show that away from finitely many concentration points of the total curvature, the surface converges strongly in $W^{2,2}$.  Furthermore, we have an energy identity for the total curvature, at the concentration points after a blow-up procedure we show that there is a bubble tree consisting of complete non-compact (branched) minimal surfaces of finite total curvature which are quantised in multiples of 4\pi. We will also apply this method to the mean curvature flow, showing that sequences of surfaces that are locally converging to a self-shrinker in L^2 also develop a bubble tree of complete non-compact (branched) minimal surfaces in Euclidean space with finite total curvature quantised in multiples of 4\pi. 

  • Partial Differential Equations Seminar
30 January 2017
16:00
Miguel Manzano
Abstract
In this talk we will discuss some properties of Schrödinger operators on parabolic manifolds, and particularize them to study the stability operator of a parabolic surface with constant mean curvature immersed in a 3-manifold that admits a Killing vector field. As an application, we will determine the range of values of H such that some homogeneous 3-manifolds admit complete parabolic stable surfaces with constant mean curvature H. Time permitting, we will also discuss some related area and first-eigenvalue estimates for the stability operator of constant mean curvature graphs in such 3-manifolds.
  • Partial Differential Equations Seminar
23 January 2017
16:00
Mariapia Palombaro
Abstract

Linear elasticity can be rigorously derived from finite elasticity in the case of small loadings in terms of \Gamma-convergence. This was first done by Dal Maso-Negri-Percivale in the case of one-well energies with super-quadratic growth. This has been later generalised to different settings, in particular to the case of multi-well energies where the distance between the wells is very small (comparable to the size of the load). I will discuss recent developments in the case when the distance between the wells is arbitrary. In this context linear elasticity can be derived by adding to the multi-well energy a singular higher order term which penalises jumps from one well to another. The size of the singular term has to satisfy certain scaling assumptions which turn out to be optimal. (This is joint work with Alicandro, Dal Maso and Lazzaroni.) 

  • Partial Differential Equations Seminar
16 January 2017
16:00
Kevin Hughes
Abstract

In this talk we will motivate and discuss several problems and results in harmonic analysis that involve some arithmetic or discrete structure. We will focus on pioneering work of Bourgain on discrete restriction theorems and pointwise ergodic theorems for arithmetic sets, their modern developments and future directions for the field.

  • Partial Differential Equations Seminar
28 November 2016
15:30
Abstract

We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in an arbitrary open subset of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calderón problem. This is a joint work with T. Ghosh (HKUST) and G. Uhlmann (Washington).
 

  • Partial Differential Equations Seminar
28 November 2016
14:15
Alessia Nota
Abstract

In this talk we consider particular solutions of the Boltzmann equation which have the form $f (x,v,t) = g (v − M (t)x,t)$ where $M (t) = A(I + tA)^{−1}$ with the matrix $A$ describing a shear flow or a dilatation or a combination of both. These solutions are known as equidispersive solutions. We will show that, for different choices for the matrix A and for different homogeneities of the collision kernel, we obtain different long time asymptotics for the corresponding equidispersive solutions. In particular we will focus on the case of simple shear flow and prove rigorously the existence of self-similar solutions with exponentially increasing internal energy.

  • Partial Differential Equations Seminar
21 November 2016
16:00
Miroslav Bulíček
Abstract
We investigate the properties of certain elliptic systems leading, a priori, to solutions that belong to the space of Radon measures. We show that if the problem is equipped with a so-called Uhlenbeck structure, then the solution can in fact be understood as a standard weak solution, with one proviso: analogously as in the case of minimal surface equations, the attainment of the boundary value is penalized by a measure supported on (a subset of) the boundary, which, for the problems under consideration here, is the part of the boundary where a Neumann boundary condition is imposed. Finally, we will connect such elliptic systems with certain problems in elasticity theory – the limiting strain models.
  • Partial Differential Equations Seminar
14 November 2016
16:00
Richard James
Abstract
We find exact solutions of Maxwell's equations that are the precise analog of plane waves, but in the case that the translation group is replaced by the Abelian helical group. These waves display constructive/destructive interference with helical atomic structures, in the same way that plane waves interact with crystals. We show how the resulting far-field pattern can be used for structure determination. We test the method by doing theoretical structure determination on the Pf1 virus from the Protein Data Bank. The underlying mathematical idea is that the structure is the orbit of a group, and this group is a subgroup of the invariance group of the differential equations. Joint work with Dominik Juestel and Gero Friesecke. (Acta Crystallographica A72 and SIAM J. Appl Math).
  • Partial Differential Equations Seminar

Pages