Past Partial Differential Equations Seminar

21 November 2016
16:00
Miroslav Bulíček
Abstract
We investigate the properties of certain elliptic systems leading, a priori, to solutions that belong to the space of Radon measures. We show that if the problem is equipped with a so-called Uhlenbeck structure, then the solution can in fact be understood as a standard weak solution, with one proviso: analogously as in the case of minimal surface equations, the attainment of the boundary value is penalized by a measure supported on (a subset of) the boundary, which, for the problems under consideration here, is the part of the boundary where a Neumann boundary condition is imposed. Finally, we will connect such elliptic systems with certain problems in elasticity theory – the limiting strain models.
  • Partial Differential Equations Seminar
14 November 2016
16:00
Richard James
Abstract
We find exact solutions of Maxwell's equations that are the precise analog of plane waves, but in the case that the translation group is replaced by the Abelian helical group. These waves display constructive/destructive interference with helical atomic structures, in the same way that plane waves interact with crystals. We show how the resulting far-field pattern can be used for structure determination. We test the method by doing theoretical structure determination on the Pf1 virus from the Protein Data Bank. The underlying mathematical idea is that the structure is the orbit of a group, and this group is a subgroup of the invariance group of the differential equations. Joint work with Dominik Juestel and Gero Friesecke. (Acta Crystallographica A72 and SIAM J. Appl Math).
  • Partial Differential Equations Seminar
31 October 2016
16:30
Abstract


We consider the Beris-Edwards model of liquid crystal dynamics. We study a non-dimensionalisation and regime suited for the study of defect patterns, that amounts to a combined high Ericksen and high Reynolds  number regime. 
We identify some of the flow mechanisms responsible for the appearance of localized gradients that increase in time.
This is joint work with Hao Wu (Fudan).
 

  • Partial Differential Equations Seminar
24 October 2016
16:00
Abstract

A generalisation of the classical Gauss-Bonnet theorem to higher-dimensional compact Riemannian manifolds was discovered by Chern and has been known for over fifty years. However, very little is known about the corresponding formula for complete or singular Riemannian manifolds. In this talk, we explain a new Chern-Gauss-Bonnet theorem for a class of manifolds with finitely many conformally flat ends and singular points. More precisely, under the assumptions of finite total Q curvature and positive scalar curvature at the ends and at the singularities, we obtain a Chern-Gauss-Bonnet type formula with error terms that can be expressed as isoperimetric deficits. This is joint work with Huy Nguyen. 

  • Partial Differential Equations Seminar
17 October 2016
16:00
Giuseppe Tinaglia
Abstract

In this talk I will begin by reviewing classical geometric properties of constant mean curvature surfaces, H>0, in R^3. I will then talk about several more recent results for surfaces embedded in R^3 with constant mean curvature, such as curvature and radius estimates. Finally I will show applications of such estimates including a characterisation of the round sphere as the only simply-connected surface embedded in R^3 with constant mean curvature and area estimates for compact surfaces embedded in a flat torus with constant mean curvature and finite genus. This is joint work with Meeks.

  • Partial Differential Equations Seminar
10 October 2016
16:00
Igor Velcic
Abstract

We will give the results on the models of thin plates and rods in nonlinear elasticity by doing simultaneous homogenization and dimensional reduction. In the case of bending plate we are able to obtain the models only under periodicity assumption and assuming some special relation between the periodicity of the material and thickness of the body. In the von K\'arm\'an regime of rods and plates and in the bending regime of rods we are able to obtain the models in the general non-periodic setting. In this talk we will focus on the derivation of the rod model in the bending regime without any assumption on periodicity.

  • Partial Differential Equations Seminar
13 June 2016
16:00
Laurent Dietrich
Abstract

we study a new mechanism of reaction-diffusion involving a line with fast diffusion, proposed to model the influence of transportation networks on biological invasions. 
We will be interested in the existence and uniqueness of traveling waves solutions, and especially focus on their velocity. We will show that it grows as the square root of the diffusivity on the line, generalizing and showing the robustness of a result by Berestycki, Roquejoffre and Rossi (2013), and provide a characterization of the growth ratio thanks to an hypoelliptic (a priori) degenerate system. 
Finally we will take a look at the dynamics and show that the waves attract a large class of initial data. In particular, we will shed light on a new mechanism of attraction which enables the waves to attract initial data with size independent of the diffusion on the line : this is a new result, in the sense than usually, enhancement of propagation has to be paid by strengthening the assumptions on the size of the initial data for invasion to happen.

  • Partial Differential Equations Seminar

Pages