Let f be the planar Bargmann-Fock field, i.e. the analytic Gaussian field with covariance kernel exp(-|x-y|^2/2). We compute the critical point for the percolation model induced by the level sets of f. More precisely, we prove that there exists a.s. an unbounded component in {f>p} if and only if p<0. Such a percolation model has been studied recently by Beffara-Gayet and Beliaev-Muirhead. One important aspect of our work is a derivation of a (KKL-type) sharp threshold result for correlated Gaussian variables. The idea to use a KKL-type result to compute a critical point goes back to Bollobás-Riordan. This is joint work with Alejandro Rivera.