Past String Theory Seminar

8 May 2017
12:45
Abstract

The gauged linear sigma model (GLSM) is a supersymmetric gauge theory in two dimensions which captures information about Calabi-Yaus and their moduli spaces. Recent result in supersymmetric localization provide new tools for computing quantum corrections in string compactifications. This talk will focus on the hemisphere partition function in the GLSM which computes the quantum corrected central charge of B-type D-branes. Several concrete examples of GLSMs and the application of the hemisphere partition function in the context of transporting D-branes in the Kahler moduli space will be given.

 
  • String Theory Seminar
24 April 2017
12:45
Mike Stillman
Abstract

Calabi-Yau 3-folds play a large role in string theory.  Cohomology of sheaves on such varieties has many uses in string theory, including counting the number of particles or fields in a theory, as well as to help identify terms in the superpotential that determines the equations of motion of the corresponding string theory, and many other uses as well.  As a computational algebraic geometer, string theory provides a rich source of new computational problems to solve.

In this talk, we focus on the search for rigid divisors on these Calabi-Yau hypersurfaces of toric varieties.  We have had methods to compute sheaf cohomology on these varieties for many years now (Eisenbud-Mustata-Stillman, around 2000), but these methods fail for many of the examples of interest, in that they take a very long time, or the software (wisely) refuses to try!

We provide techniques and formulas for the sheaf cohomology of certain divisors of interest in string theory, that other current methods cannot handle.  Along the way, we describe a Macaulay2 package for computing with these objects, and show its use on examples.

This is joint work with Andreas Braun, Cody Long, Liam McAllister, and Benjamin Sung.

 
 
 
  • String Theory Seminar
6 March 2017
12:45
Pietro Benetti-Genolini
Abstract

Localization and holography are powerful approaches to the computation of supersymmetric observables. The computations may, however, include divergences. Therefore, one needs renormalization schemes preserving supersymmetry. I will consider minimal gauged supergravity in five dimensions to demonstrate that the standard holographic renormalization scheme breaks supersymmetry, and propose a set of non-standard boundary counterterms that restore supersymmetry. I will then show that for a certain class of solutions the improved on-shell action correctly reproduces an intrinsic observable of four-dimensional SCFTs, the supersymmetric Casimir energy.

 
  • String Theory Seminar
27 February 2017
12:45
Leron Borsten
Abstract

We begin by reviewing the “Gravity = Gauge x Gauge” paradigm that has emerged over the last decade. In particular, we will consider the origin of gravitational scattering amplitudes, symmetries and classical solutions in terms of the product of two Yang-Mills theories. Motivated by these developments we begin to address the classification of gravitational theories admitting a “factorisation” into a product of gauge theories. Progress in this direction leads us to twin supergravity theories - pair of supergravities with distinct supersymmetries, but identical bosonic sectors - from the perspective of Yang-Mills squared. 

 
 
  • String Theory Seminar
20 February 2017
12:45
Fabian Ruehle
Abstract

We study D3 brane theories that are described as deformations of N=2 SCFTs. They arise at the self-intersection of a 7-brane in F-Theory. As we shall explain, the associated string junctions and their monodromies can be studied via torus knots or links. The monodromy reduces (potentially different) flavor algebras of dual deformations of N=2 theories and projects out charged states, leading to N=1 SCFTs. We propose an explanation for these effects in terms of an electron-monopole-dyon condensate.

 
 
  • String Theory Seminar
13 February 2017
12:45
Adriana Salerno
Abstract

Mirror symmetry predicts surprising geometric correspondences between distinct families of algebraic varieties. In some cases, these correspondences have arithmetic consequences. Among the arithmetic correspondences predicted by mirror symmetry are correspondences between point counts over finite fields, and more generally between factors of their Zeta functions. In particular, we will discuss our results on a common factor for Zeta functions alternate families of invertible polynomials. We will also explore closed formulas for the point counts for our alternate mirror families of K3 surfaces and their relation to their Picard–Fuchs equations. Finally, we will discuss how all of this relates to hypergeometric motives. This is joint work with: Charles Doran (University of Alberta, Canada), Tyler Kelly (University of Cambridge, UK), Steven Sperber (University of Minnesota, USA), John Voight (Dartmouth College, USA), and Ursula Whitcher (American Mathematical Society, USA).

 
  • String Theory Seminar
6 February 2017
12:45
Andreas Braun
Abstract

Recently, millions of novel examples of compact G2 holonomy manifolds have been constructed as twisted connected sums of asymptotically cylindrical Calabi-Yau threefolds. In case these are K3 fibred, they can in turn be constructed from dual pairs of tops. This is analogous to Batyrev's construction of Calabi-Yau manifolds via reflexive polytopes. For compactifications of Type II superstrings on such G2 manifolds, we formulate a construction of the mirror.

 
  • String Theory Seminar
30 January 2017
12:45
Henrik Gustafsson
Abstract

Automorphic forms arise naturally when studying scattering amplitudes in toroidal compactifications of string theory. In this talk, I will summarize the conditions on four-graviton amplitudes from the literature required by U-duality, supersymmetry and string perturbation theory, which are satisfied by certain Eisenstein series on exceptional Lie groups. Physical information, such as instanton effects, are encoded in their Fourier coefficients on parabolic subgroups, which are, in general, difficult to compute. I will demonstrate a method for evaluating certain Fourier coefficients of interest in string theory. Based on arXiv:1511.04265, arXiv:1412.5625 and work in progress.
 

 
  • String Theory Seminar
23 January 2017
12:45
Fernando Alday
Abstract

A conformal field theory is characterised by the CFT data, namely the spectrum of scaling dimensions and OPE coefficients. The idea of the conformal bootstrap is to use associativity of the operator algebra together with the symmetries of the theory to constraint the CFT data. For the sector of operators with large spin one can actually use these ideas to obtain analytical results. It was recently understood how to set up a systematic expansion around this sector, leading to analytic results to all orders in inverse powers of the spin. We will show how to use this large spin perturbation theory to obtain analytic results for vast families of CFTs. Some of the applications include vector models, weakly coupled gauge theories and the computation of loops for scalar theories in AdS.

 
 
  • String Theory Seminar
16 January 2017
12:45
Eduardo Casali
Abstract

The ambitwistor string of Mason and Skinner has been very successful in describing field theory amplitudes, at both loop and tree-level for a variety of theories. But the original action given by Mason and Skinner is already partially gauge-fixed, which obscures some issues related to modular invariance and the connection to conventional string theories. In this talk I will argue that the Null string is the ungauge-fixed version of the Ambitwistor string. This clarifies the geometry of the original Ambitwistor string and gives a road map to understanding modular invariance, and gives new formulas for loop amplitudes in which we expect that UV divergences will be easier to analyse.

 
 
  • String Theory Seminar

Pages