Forthcoming events in this series


Mon, 07 Mar 2022
13:00
L2

Symmetry-enriched quantum criticality

Nick Jones
(Oxford)
Abstract

I will review aspects of the theory of symmetry-protected topological phases, focusing on the case of one-dimensional quantum chains. Important concepts include the bulk-boundary correspondence, with bulk topological invariants leading to interesting boundary phenomena. I will discuss topological invariants and associated boundary phenomena in the case that the system is gapless and described at low energies by a conformal field theory. Based on work with Ruben Verresen, Ryan Thorngren and Frank Pollmann.

Mon, 28 Feb 2022
12:45
Virtual

Comments on scale-separated AdS vacua

Miguel Montero
(Harvard)
Abstract

There have been several proposals of scale-separated AdS vacua in the literature. All known examples arise from the effective field theory of flux compactifications with low supersymmetry, and there are often doubts about their consistency as 10 or 11d backgrounds in string theory. These issues can often be tackled in the bulk theory, or by analysis of the dual CFT via holography. I will review the most common issues, and focus the analysis on the recently constructed family of 3d scale-separated AdS vacua, which is dual to a two-dimensional CFT, emphasizing the discrete symmetry structure of the model in comparison to DGKT. Finally, I will comment on the tantalizing observation of integer operator dimensions in DGKT-like vacua, and comment on possible places to look for consistency issues in these models.

Mon, 21 Feb 2022
13:00
L2

Lifting the degeneracy between holographic CFTs

Connor Behan
(Oxford)
Abstract

Holographic correlation functions are under good analytic control when none of the single trace operators live in long multiplets. This is famously the case for SCFTs with sixteen supercharges but it is also possible to construct examples with eight supercharges by exploiting space filling branes in AdS. In particular, one can study 4d N=2 theories which are related to each other by an S-fold in much the same way that N=3 theories are related to N=4 Super Yang-Mills. I will describe how modern methods provide a window into their correlation functions with an emphasis on anomalous dimensions. To compare the different S-folds we will need to go to one loop, and to go to one loop we will need to account for operator mixing. This provides an example of resolving degeneracy by resolving degeneracy.

 

Mon, 14 Feb 2022
12:45
L1

The uses of lattice topological defects

Paul Fendley
(University of Oxford)
Abstract

Great progress has been made recently in exploiting categorical/topological/higher symmetries in quantum field theory. I will explain how the same structure is realised directly in the lattice models of statistical mechanics, generalizing Kramers-Wannier duality to a wide class of models. In particular, I will give an overview of my work with Aasen and Mong on using fusion categories to find and analyse lattice topological defects in two and 1+1 dimensions.  These defects possess a variety of remarkable properties. Not only is the partition function is independent of deformations of their path, but they can branch and fuse in a topologically invariant fashion.  The universal behaviour under Dehn twists gives exact results for scaling dimensions, while gluing a topological defect to a boundary allows universal ratios of the boundary g-factor to be computed exactly on the lattice.  I also will describe how terminating defect lines allows the construction of fractional-spin conserved currents, giving a linear method for Baxterization, I.e. constructing integrable models from a braided tensor category.

Mon, 07 Feb 2022
12:45
Virtual

TBA

Michael Blake
(Bristol)
Mon, 31 Jan 2022
12:45
L1

Topological Gravity as the Early Phase of our Universe

Prateek Agrawal
(University of Oxford)
Abstract

 I will present a scenario where the early universe is in a topological phase of gravity.  I will discuss a number of analogies which motivate considering gravity in such a phase. Cosmological puzzles such as the horizon problem provide a phenomenological connection to this phase and can be explained in terms of its topological nature. To obtain phenomenological estimates, a concrete realization of this scenario using Witten's four dimensional topological gravity will be used. In this model, the CMB power spectrum can be estimated by certain conformal anomaly coefficients. A qualitative prediction of this phase is the absence of tensor modes in cosmological fluctuations.

Mon, 24 Jan 2022
12:45
Virtual

Factorization in Quantum Gravity and Supersymmetry

Murat Kologlu
(Oxford)
Abstract

One of the lasting puzzles in quantum gravity is whether the holographic description of a gravitational system is a single quantum mechanical theory or the disorder average of many. In the latter case, multiple copies of boundary observables do not factorize into a product, but rather have higher moments. These correlations are interpreted in the bulk as due to geometries involving spacetime wormholes which connect disjoint boundaries. 

 

I will talk about the question of factorization and the role of wormholes for supersymmetric observables, specifically the supersymmetric index. Working with the Euclidean gravitational path integral, I will start with a bulk prescription for computing the supersymmetric index, which agrees with the usual boundary definition. Concretely, I will focus on the setting of charged black holes in asymptotically flat four-dimensional N=2 ungauged supergravity. In this case, the gravitational index path integral has an infinite family of Kerr-Newman classical saddles with different angular velocities. However, fermionic zero-mode fluctuations annihilate the contribution of each saddle except for a single BPS one which yields the expected value of the index. I will then turn to non-perturbative corrections involving spacetime wormholes, and show that fermionic zero modes are present for all such geometries, making their contributions vanish. This mechanism works for both single- and multi-boundary path integrals. In particular, only disconnected geometries without wormholes contribute to the index path integral, and the factorization puzzle that plagues the black hole partition function is resolved for the supersymmetric index. I will also present all other single-centered geometries that yield non-perturbative contributions to the gravitational index of each boundary. Finally, I will discuss implications and expectations for factorization and the status of supersymmetric ensembles in AdS/CFT in further generality. Talk based on [2107.09062] with Luca Iliesiu and Joaquin Turiaci.

Mon, 17 Jan 2022
12:45
Virtual

Symmetry TFTs from String Theory

Federico Bonetti
(University of Oxford)
Abstract

The global symmetries of a d-dimensional quantum field theory (QFT), and their ’t Hooft anomalies, are conveniently captured by a topological field theory (TFT) in (d+1) dimensions, which we may refer to as the Symmetry TFT of the given d-dimensional QFT. This point of view has a vast range of applicability: it encompasses both ordinary symmetries, as well as generalized symmetries. In this talk, I will discuss systematic methods to compute the Symmetry TFT for QFTs realized by M-theory on a singular, non-compact space X. The desired Symmetry TFT is extracted from the topological couplings of 11d supergravity, via reduction on the space L, the boundary of X. The formalism of differential cohomology allows us to include discrete symmetries originating from torsion in the cohomology of L. I will illustrate this framework in two classes of examples: M-theory on an ALE space (engineering 7d SYM theory); M-theory on Calabi-Yau cones (engineering 5d superconformal field theories).

Mon, 29 Nov 2021
12:45
L5

Scattering amplitudes and tropical Grassmannians

Omer Gurdogan
(University of Southampton)
Abstract

The analytic structure of scattering amplitudes exhibit striking
properties that are not at all evident from the first principles of
Quantum Field Theory. These are often rich and powerful enough to be
considered as their defining features, and this makes the problem of
finding a set of universal rules a compelling one. I will review the
recently mounting evidence for the relevance of tropical Grassmannians
in this respect, including implications on symbol alphabets and
adjacency conditions

Mon, 22 Nov 2021
13:00
L2

M-theory, enumerative geometry, and representation theory of affine Lie algebras

Dylan Butson
((Oxford University))
Further Information

Note unusual time (1pm) and room (L2)

Abstract

 I will review some well-established relationships between four manifolds and vertex algebras that can be deduced from studying the M5-brane worldvolume theory, and outline some of the corresponding results in mathematics which have been understood so far. I will then describe a proposal of Gaiotto-Rapcak to generalize these ideas to the setting of multiple M5 branes wrapping divisors in toric Calabi-Yau threefolds, and explain work in progress on understanding the mathematical implications of this proposal as a complex network of relationships between the enumerative geometry of sheaves on threefolds and the representation theory of affine Lie algebras.

Mon, 15 Nov 2021
12:45
L4

Kondo line defect and affine oper/Gaudin correspondence

Jingxiang Wu
(Oxford)
Abstract

It is well-known that the spectral data of the Gaudin model associated to a finite semisimple Lie algebra is encoded by the differential data of certain flat connections associated to the Langlands dual Lie algebra on the projective line with regular singularities, known as oper/Gaudin correspondence. Recently, some progress has been made in understanding the correspondence associated with affine Lie algebras. I will present a physical perspective from Kondo line defects, physically describing a local impurity chirally coupled to the bulk 2d conformal field theory. The Kondo line defects exhibit interesting integrability properties and wall-crossing behaviors, which are encoded by the generalized monodromy data of affine opers. In the physics literature, this reproduces the known ODE/IM correspondence. I will explain how the recently proposed 4d Chern Simons theory provides a new perspective which suggests the possibility of a physicists’ proof. 

Mon, 08 Nov 2021
13:00
L2

TBA

Matteo Sacchi
(Oxford)
Further Information

NOTE UNUSUAL TIME: 1pm

Abstract
 In this talk I will discuss an algorithm to piecewise dualise linear quivers into their mirror duals. This applies to the 3d N=4 version of mirror symmetry as well as its recently introduced 4d counterpart, which I will review. The algorithm uses two basic duality moves, which mimic the local S-duality of the 5-branes in the brane set-up of the 3d theories, and the properties of the S-wall. The S-wall is known to correspond to the N=4 T[SU(N)] theory in 3d and I will argue that its 4d avatar corresponds to an N=1 theory called E[USp(2N)], which flows to T[SU(N)] in a suitable 3d limit. All the basic duality moves and S-wall properties needed in the algorithm are derived in terms of some more fundamental Seiberg-like duality, which is the Intriligator--Pouliot duality in 4d and the Aharony duality in 3d.

 

Mon, 01 Nov 2021
12:45
Virtual

Relations between 6d and 4d SCFTs -- VIRTUAL!

Evyatar Sabag
(Oxford University)
Abstract

We will review how one can find families of 4d N=1 SCFTs starting from known 6d (1,0) SCFTs. 

Then we will discuss a relation between 6d RG-flows and 4d RG-flows, where the 4d RG-flow relates 4d N=1 models constructed from compactification of 6d (1,0) SCFTs related by the 6d RG-flow. We will show how we can utilize such a relation to find many "Lagrangians" for strongly coupled 4d models. Relating 6d SCFTs to 4d models as mentioned above will result in geometric reasoning behind some 4d phenomena such as dualities and symmetry enhancement.

Such a program generates a large database of known 4d N=1 SCFTs with many interrelations one can use in future efforts to construct 4d N=1 SCFTs from string theory directly.

Mon, 18 Oct 2021
12:45
L4

Nonperturbative Mellin Amplitudes

Joao Silva
(Oxford)
Abstract

We discuss the Mellin amplitude formalism for Conformal Field Theories
(CFT's).  We state the main properties of nonperturbative CFT Mellin
amplitudes: analyticity, unitarity, Polyakov conditions and polynomial
boundedness at infinity. We use Mellin space dispersion relations to
derive a family of sum rules for CFT's. These sum rules suppress the
contribution of double twist operators. We apply the Mellin sum rules
to: the epsilon-expansion and holographic CFT's.

Mon, 11 Oct 2021
12:45
L4

Cluster Structures in N=4 Yang-Mills Amplitudes

Anders Schreiber
(Oxford University)
Abstract

Scattering amplitudes in N=4 super-Yang-Mills theory are known to be functions of cluster variables of Gr(4,n) and certain algebraic functions of cluster variables. In this talk we give an overview of the known cluster algebraic structure of both tree amplitudes and the symbol of loop amplitudes. We suggest an algorithm for computing symbol alphabets by solving matrix equations of the form C.Z = 0 associated with plabic graphs. These matrix equations associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. We are able to reproduce all known algebraic functions of cluster variables appearing in known symbol alphabets. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n). Finally we discuss a property of the symbol called cluster adjacency.

Mon, 07 Jun 2021
12:45
Virtual

The string dual of free N=4 SYM

Matthias Gaberdiel
(ETH Zurich)
Abstract

A proposal for the worldsheet string theory that is dual to free N=4 SYM in 4d will be explained. It is described by a free field sigma model on the twistor space of AdS5 x S5, and is a direct generalisation of the corresponding model for tensionless string theory on AdS3 x S3. I will explain how our proposal fits into the general framework of AdS/CFT, and review the various checks that have been performed.
 

Mon, 31 May 2021
14:00
Virtual

Non-Invertible Global Symmetries and Completeness of the Spectrum

Irene Valenzuela
(Harvard)
Abstract

It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. I will also discuss how this correspondence is modified in more general contexts, including e.g. Chern-Simons terms. 

Mon, 24 May 2021
14:00
Virtual

RG Flows and Bounds from Chaos

Sandipan Kundu
(JHU)
Abstract

I will discuss a precise connection between renormalization group (RG) and quantum chaos. Every RG flow between two conformal fixed points can be described in terms of the dynamics of Nambu-Goldstone bosons of broken symmetries. The theory of Nambu-Goldstone bosons can be viewed as a theory in anti-de Sitter space with the flat space limit. This enables an equivalent formulation of these 4d RG flows in terms of spectral deformations of a generalized free CFT in 3d. This approach provides a precise relation between C-functions associated with 4d RG flows and certain out-of-time-order correlators that diagnose chaos in 3d. As an application, I will show that the 3d chaos bound imposes constraints on the low energy effective action associated with unitary RG flows in 4d with a broken continuous global symmetry in the UV. These bounds, among other things, imply that the proof of the 4d a-theorem remains valid even when additional global symmetries are broken.

Mon, 17 May 2021
14:00
Virtual

TBA

Thiago Fleury
(IIP Brazil)
Mon, 10 May 2021
12:45
Virtual

G2 structure manifolds and almost contact structures

Magdalena Larfors
(Uppsala)
Abstract

Manifolds with G2 structure allow almost contact structures. In this talk I will discuss various aspects of such structures, and their effect on certain supersymmetric configurations in string and M-theory.

This is based on recent work with Xenia de la Ossa and Matthew Magill.

Mon, 03 May 2021
11:30
Virtual

Probing gravitational EFTs with the four-graviton amplitude

Sasha Zhiboedov
(Cern)
Abstract

We discuss constraints from perturbative unitarity and crossing on the leading contributions of the higher-dimension operators to the four-graviton amplitude in four spacetime dimensions. We focus on the leading order effect due to exchange by massive degrees of freedom which makes the amplitudes of interest IR finite. To test the constraints we obtain nontrivial effective field theory data by computing and taking the large mass expansion of the one-loop minimally-coupled four-graviton amplitude with massive particles up to spin 2 circulating in the loop. Remarkably, the leading EFT corrections to Einstein gravity of physical theories, both string theory and QFT coupled to gravity, end up in minuscule islands which are much smaller than what is suggested by the generic bounds obtained from consistency of the 2-2 graviton scattering amplitude. We discuss the underlying mechanism for this phenomenon.

Mon, 26 Apr 2021
12:45
Virtual

Calculation of zeta functions for one parameter families of Calabi-Yau manifolds

Philip Candelas
(Oxford)
Abstract

The periods of a Calabi-Yau manifold are of interest both to number theorists and to physicists. To a number theorist the primary object of interest is the zeta function. I will explain what this is, and why this is of interest also to physicists. For applications it is important to be able to calculate the local zeta function for many primes p. I will set out a method, adapted from a procedure proposed by Alan Lauder that makes the computation of the zeta function practical, in this sense, and comment on the form of the results. This talk is based largely on the recent paper hepth 2104.07816 and presents joint work with Xenia de la Ossa and Duco van Straten.

Mon, 08 Mar 2021
14:00
Virtual

Free Energy from Replica Wormholes

Netta Engelhardt
(MIT)
Abstract

Recent developments on the black hole information paradox have shown that Euclidean wormholes — so called “replica wormholes’’  — can dominate the von Neumann entropy as computed by a gravitational path integral, and that inclusion of these wormholes results in a unitary Page curve. This development raises some puzzles from the perspective of factorization, and has raised questions regarding what the gravitational path integral is computing. In this talk, I will focus on understanding the relationship between the gravitational path integral and the partition function via the gravitational free energy (more generally the generating functional). A proper computation of the free energy requires a replica trick distinct from the usual one used to compute the entropy. I will show that in JT gravity there is a regime where the free energy computed without replica wormholes is pathological. Interestingly, the inclusion of replica wormholes is not quite sufficient to resolve the pathology: an alternative analytic continuation is required. I will discuss the implications of this for various interpretations of the gravitational path integral (e.g. as computing an ensemble average) and also mention some parallels with spin glasses. 

Mon, 01 Mar 2021
12:45
Virtual

NO SEMINAR

NO SEMINAR
Mon, 22 Feb 2021
12:45
Virtual

The interplay between global and local anomalies

Joe Davighi
(University of Cambridge)
Abstract

Chiral fermion anomalies in any spacetime dimension are computed by evaluating an eta-invariant on a closed manifold in one higher dimension. The APS index theorem then implies that both local and global gauge anomalies are detected by bordism invariants, each being classified by certain abelian groups that I will identify. Mathematically, these groups are connected via a short exact sequence that splits non-canonically. This enables one to relate global anomalies in one gauge theory to local anomalies in another, by which we revive (from the bordism perspective) an old idea of Elitzur and Nair for deriving global anomalies. As an example, I will show how the SU(2) anomaly in 4d can be derived from a local anomaly by embedding SU(2) in U(2).