Forthcoming events in this series


Mon, 06 Feb 2017

12:45 - 13:45
L3

Mirror Symmetry for G2-Manifolds: Twisted Connected Sums and Dual Tops

Andreas Braun
(Oxford)
Abstract

Recently, millions of novel examples of compact G2 holonomy manifolds have been constructed as twisted connected sums of asymptotically cylindrical Calabi-Yau threefolds. In case these are K3 fibred, they can in turn be constructed from dual pairs of tops. This is analogous to Batyrev's construction of Calabi-Yau manifolds via reflexive polytopes. For compactifications of Type II superstrings on such G2 manifolds, we formulate a construction of the mirror.

 
Mon, 30 Jan 2017

12:45 - 13:45
L3

Automorphic String Amplitudes

Henrik Gustafsson
(Goteborg)
Abstract

Automorphic forms arise naturally when studying scattering amplitudes in toroidal compactifications of string theory. In this talk, I will summarize the conditions on four-graviton amplitudes from the literature required by U-duality, supersymmetry and string perturbation theory, which are satisfied by certain Eisenstein series on exceptional Lie groups. Physical information, such as instanton effects, are encoded in their Fourier coefficients on parabolic subgroups, which are, in general, difficult to compute. I will demonstrate a method for evaluating certain Fourier coefficients of interest in string theory. Based on arXiv:1511.04265, arXiv:1412.5625 and work in progress.
 

 
Mon, 23 Jan 2017

12:45 - 13:45
L3

Large Spin Pertubation Theory

Fernando Alday
(Oxford)
Abstract

A conformal field theory is characterised by the CFT data, namely the spectrum of scaling dimensions and OPE coefficients. The idea of the conformal bootstrap is to use associativity of the operator algebra together with the symmetries of the theory to constraint the CFT data. For the sector of operators with large spin one can actually use these ideas to obtain analytical results. It was recently understood how to set up a systematic expansion around this sector, leading to analytic results to all orders in inverse powers of the spin. We will show how to use this large spin perturbation theory to obtain analytic results for vast families of CFTs. Some of the applications include vector models, weakly coupled gauge theories and the computation of loops for scalar theories in AdS.

 
 
Mon, 16 Jan 2017

12:45 - 13:45
L3

The null string origin of the ambitwistor string

Eduardo Casali
(Oxford)
Abstract

The ambitwistor string of Mason and Skinner has been very successful in describing field theory amplitudes, at both loop and tree-level for a variety of theories. But the original action given by Mason and Skinner is already partially gauge-fixed, which obscures some issues related to modular invariance and the connection to conventional string theories. In this talk I will argue that the Null string is the ungauge-fixed version of the Ambitwistor string. This clarifies the geometry of the original Ambitwistor string and gives a road map to understanding modular invariance, and gives new formulas for loop amplitudes in which we expect that UV divergences will be easier to analyse.

 
 
Mon, 28 Nov 2016
12:45
L3

Understanding the Landscape of N=2 Super-Conformal Field Theories

Mario Martone
(Cornell)
Abstract

In this talk I will argue that a systematic classification of 4d N=2 superconformal field theories is possible through a careful analysis of the geometry of their Coulomb branches. I will carefully describe this general framework and then carry out the classification explicitly in the rank-1, that is one complex dimensional Coulomb branch, case.  We find that the landscape of rank-1 theories is still largely unexplored and make a strong case for the existence of many new rank-1 SCFTs, almost doubling the number of theories already known in the literature. The existence of 4 of them has been recently confirmed using alternative methods and others have an enlarged N=3, supersymmetry. 

While our study focuses on Coulomb Branch geometries, we can extract much more information about these SCFTs. I will spend the last part of my talk outlining what else we can learn and the extent in which our study can be complementary to other method to study SCFTs (Conformal Bootstrap above all!).

 
 
Mon, 21 Nov 2016
12:45
L3

Calabi-Yau Moduli Spaces from 2D Gauge Theories

Hans Jockers
(Bonn)
Abstract

In this talk I will introduce methods to use 2d gauge theories as a means to describe Calabi-Yau varieties and their moduli spaces. As I review, this description furnishes a natural framework to predict derived equivalences between pairs of (sometimes even non-birational) Calabi-Yau varieties. A prominent example of this kind is realized by the Rødland non-birational pair of Calabi-Yau threefolds.
Using the 2d gauge theory description, I will propose further examples of derived equivalences among non-birational Calabi-Yau varieties.

 
Mon, 14 Nov 2016
12:45
L3

Monopoles, Vortices and Vermas

Mathew Bullimore
(Oxford)
Abstract

In 3d gauge theories, monopole operators create and destroy vortices. I will explore this idea in the context of 3d N = 4 supersymmetric gauge theories and explain how it leads to an exact calculation of quantum corrections to the Coulomb branch and a finite version of the AGT correspondence. 

 
Mon, 07 Nov 2016
12:45
L3

Some aspects of interacting conformal higher spin theories in 2+1 dimensions

Bengt Nilsson
(Chalmers University of Technology)
Abstract

In this talk I will discuss some features of interacting conformal higher spin theories in 2+1 dimensions. This is done in the context of Chern-Simons theory (giving e.g. the complete spin 2 covariant  spin 3 sector) and a higher spin coupled unfolded equation for the scalar singleton. One motivation for studying these theories is that their non-linear properties are rather poorly understood contrary to the situation for the Vasiliev type theory in this dimension which is under much better control. Another reason for the interest in these theories comes from AdS4/CFT3 and the possibility that Neumann/mixed bc for bulk higher spin fields may lead to conformal higher spin fields governed by Chern-Simons terms on the boundary. These theories generalise the spin 2 gauged BLG-ABJ(M)  theories found a few years ago to higher spins than 2.

 
Fri, 04 Nov 2016
11:00
C5

Gauge theory and Fueter maps

Andriy Haydys
(Bielefeld University)
Abstract

A Fueter map between two hyperKaehler manifolds is a solution of a Cauchy-Riemann-type equation in the quaternionic context. In this talk I will describe relations between Fueter maps, generalized Seiberg-Witten equations, and Yang-Mills instantons on G2-manifolds (so called G2-instantons).

 
 
Mon, 31 Oct 2016
12:45
L3

Generalising Calabi-Yau for flux backgrounds

Anthony Ashmore
(Oxford)
Abstract

Calabi-Yau spaces provide well-understood examples of supersymmetric vacua in supergravity. The supersymmetry conditions on such spaces can be rephrased as the existence and integrability of a particular geometric structure. When fluxes are allowed, the conditions are more complicated and the analogue of the geometric structure is not well understood.
In this talk, I will review work that defines the analogue of Calabi-Yau geometry for generic D=4, N=2 supergravity backgrounds. The geometry is characterised by a pair of structures in generalised geometry, where supersymmetry is equivalent to integrability of the structures. I will also discuss the extension AdS backgrounds, where deformations of these geometric structures correspond to exactly marginal deformations of the dual field theories.

 
 
Mon, 24 Oct 2016
12:00
L3

M5-branes and 4d-2d Dualities

Sakura Schafer-Nameki
(Oxford)
Abstract

M5-branes on 4-manifolds M_4 realized as co-associatives in G_2 give rise to 2d (0,2) superconformal theories. In this talk I will propose a duality between these 2d (0,2) theories and 4d topological theories, which are sigma-models from M_4 into the Nahm moduli space. 

 
Mon, 17 Oct 2016
12:00
L3

Vertex operator algebras from four-dimensional SCFTs

Christopher Beem
(Oxford)
Abstract

I will review the recently exposed connection between N=2 superconformal field theories in four dimensions and vertex operator algebras (VOAs). I will outline some general features of the VOAs that arise in this manner and describe the manner in which they reflect four-dimensional operations such as gauging and Higgsing. Time permitting, I will also touch on the modular properties of characters of these VOAs.

Mon, 10 Oct 2016
12:00
L3

A space of states in Berkovits string theory: a mathematical approach

Michael Movshev
(SUNY at Stony Brook)
Abstract

Pure spinor space, a cone over orthogonal Grassmannian OGr(5,10), is a central concept in the Berkovits formulation of string theory. The space of states of the beta-gamma system on pure spinors is tensor factor in the Hilbert space of string theory . This is why it would be nice to have a good definition of this space of states. This is not a straightforward task because of the conical singularity of the target. In the talk I will explain a strategy for attacking  conical targets. In the case of pure spinors the method gives a formula for partition function of pure spinors.

Mon, 06 Jun 2016

12:00 - 13:00
L5

Black Holes and Higher Derivative Gravity

Kellogg Stelle
(Imperial College)
Abstract
Quantum corrections to the gravitational action generically include quadratic terms in the curvature. Moreover, these terms are distinguished with respect to other corrections in that their inclusion renders the theory renormalisable. The talk will discuss the changes their inclusion make to black hole solutions and the occurrence of other spherically symmetric solutions, such as wormholes and horizonless solutions.
Mon, 23 May 2016

12:00 - 13:00
L3

Marginal deformations of N=1 SCFT's and generalised geometry

Michela Petrini
(LPTHE Jussieu)
Abstract
Generalised Geometry is a very powerful tool to study gravity duals of strongly coupled gauge theories. In this talk I will discuss how Exceptional Geometry can be used to study marginal deformations of N=1 SCFT's in 4 and 3 dimensions.
Mon, 16 May 2016

12:00 - 13:00
L3

A metric and geometry for heterotic moduli

Jock McOrist
(Surrey)
Abstract

Heterotic vacua, defined with a holomorphic bundle and connection satisfying hermitian Yang-Mills, realise four-dimensional chiral gauge theories. We exploit the rich interplay between four-dimensional physics, supersymmetry and  geometry to construct a natural Kaehler metric for the moduli space, with a shockingly simple Kaehler potential. Along the way, we discover a natural geometric structure for the heterotic moduli.
 

Mon, 09 May 2016

12:00 - 13:00
L3

Mirror symmetry, supersymmetry and generalized geometry on SU(4)-structure vacua

Daniel Prins
(CEA/Saclay)
Abstract
Recently, there has been some progress in examining mirror symmetry beyond Calabi-Yau threefolds. I will discuss how this is related to flux vacua of type II supergravity on eight-dimensional manifolds equipped with SU(4)-structure. It will be shown that the natural framework to describe such vacua is generalized complex geometry. Two classes of type IIB solutions will be given, one of which is complex, the other symplectic, and I will describe in what sense these are mirror to one another.  
 
Mon, 02 May 2016

12:00 - 13:00
L3

Another look at the information paradox: Soft black hole hair

Malcolm Perry
(Cambridge)
Abstract

The black hole information paradox comes about because of the classical no-hair theorems for black holes. I will discuss soft black hole hair in electrodynamics and in gravitation. Then some speculations on its relevance to the in formation paradox are presented.

Mon, 25 Apr 2016

12:00 - 13:00
L3

Yang-Mills Theory and the ABC Conjecture

Yang-Hui He
Abstract

We establish a correspondence between the ABC Conjecture and N=4 super-Yang-Mills theory. This is achieved by combining three ingredients:

(i) Elkies' method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings;

(ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and

(iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d'enfant in the sense of Grothendieck. 
 

We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The Conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of N=4 SYM.

Mon, 07 Mar 2016

12:00 - 13:00
L5

3d N=2 dualities with monopoles

Sara Pasquetti
(Surrey)
Abstract

I will present several new  3d N=2 dualities with super-potentials involving monopole operators. Some of the theories that I will discuss describe systems of D3 branes ending on pq-webs. In these cases  3d mirror symmetry is a consequence of S-duality.

 

Mon, 29 Feb 2016

12:00 - 13:00
L5

Black holes, entropy, and mock modular forms

Sameer Murthy
(Kings College London)
Abstract

It was discovered in the 1970s that black holes are thermodynamic objects carrying entropy, thus suggesting that they are really an ensemble of microscopic states. This idea has been realized in a remarkable manner in string theory, wherein one can describe these ensembles in a class of models. These ensembles are known, however, to contain configurations other than isolated black holes, and it remains an outstanding problem to precisely isolate a black hole in the microscopic ensemble. I will describe how this problem can be solved completely in N=4 string theory. The solution involves surprising relations to mock modular forms -- a class of functions first discovered by S. Ramanujan about 95 years ago. 

Fri, 26 Feb 2016

13:00 - 14:00
L3

Tunneling in Theories with Many Fields

Sonia Paban
(University of Texas at Austin)
Abstract

The possibility of a landscape of metastable vacua raises the question of what fraction of vacua are truly long lived. Naively any would-be vacuum state has many nearby decay paths, and all possible decays must be suppressed. An interesting model of this phenomena consists of N scalars with a random potential of fourth order. We show that the scaling of the typical minimal bounce action with N is readily understood. We discuss the extension to more realistic landscape models as well as the effects of gravity. 

Mon, 15 Feb 2016

12:00 - 13:00
L5

Tops as Building Blocks for G2 Manifolds

Andreas Braun
(Oxford)
Abstract

A large number of examples of compact G2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two appropriate building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes.

Mon, 08 Feb 2016

12:00 - 13:00
L5

Causality constraints on the graviton 3-point vertex

Jose Edelstein
(Santiago de Compostela)
Abstract

I will consider higher derivative corrections to the graviton 3-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond that of Einstein’s theory. I will argue that these structures are constrained by causality, and show that the problem cannot be fixed by adding conventional particles with spins J ≤ 2, but adding an infinite tower of massive particles with higher spins. Implications of this result in the context of AdS/CFT, quantum gravity in asymptotically flat space-times, and non-Gaussianity features of primordial gravitational waves are discussed.

 
 
 
Mon, 01 Feb 2016

12:00 - 13:00
L5

Axion Decay Constants Away From the Lamppost

Sven Krippendorf
(Oxford)
Abstract

It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 $M_P$). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.