# Past String Theory Seminar

I shall demonstrate, under some mild assumptions, that the symmetry group of extreme, Killing, supergravity horzions contains an sl(2, R) subalgebra. The proof requires a generalization of the Lichnerowicz theorem for non-metric connections. The techniques developed can also be applied in the classification

of AdS and Minkowski flux backgrounds.

I will discuss how singular fibers in higher codimension in elliptically fibered Calabi-Yau fourfolds can be studied using Coulomb branch phases for d=3 supersymmetric gauge theories. This approach gives an elegent description of the generalized Kodaira fibers in terms of combinatorial/representation-theoretic objects called "box graphs", including the network of flops connecting distinct small resolutions. For physics applications, this approach can be used to constrain the possible matter spectra and possible U(1) charges (models with higher rank Mordell Weil group) for F-theory GUTs.

I will speak about weak Fano 3-folds, K3 surfaces and their Picard lattices, and explain how to solve the matching problem in various situations

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.

The chiral scalar superfield has interesting BRST cohomology, but the relevant cohomology objects all have spinor indices. So they cannot occur in an action. They need to be coupled to a chiral dotted spinor superfield. Until now, this has been very problematic, since no sensible action for a chiral dotted spinor superfield was known. The most obvious such action contains higher derivatives and tachyons.

Now, a sensible action has been found. When coupled to the cohomology, this action removes the supersymmetry charge from the theory while maintaining the rigidity and power of supersymmetry.The simplest example of this phenomenon has exactly the fermion content of the Leptons or the Quarks. The mechanism has the potential to get around the cosmological constant problem, and also the problem of the sum rules of spontaneously broken supersymmetry.

This is a report on an ongoing project to construct Calabi-Yau manifolds for which the Hodge numbers $(h^{11}, h^{21})$ are both relatively small. These manifolds are, in a sense, the simplest Calabi-Yau manifolds. I will report on joint work with Volker Braun, Andrei Constantin, Rhys Davies, Challenger Mishra and others.

The planar N=4 SYM is believed to be integrable. Following this thoroughly justified belief, its exact spectrum had been encoded recently into a quantum spectral curve (QSC). We can explicitly solve the QSC in various regimes; in particular, one can perform a highly-efficient weak coupling expansion.

I will explain how QSC looks like for the harmonic oscillator and then, using this analogy, introduce the QSC equations for the SYM spectrum. We will use these equations to compute a particular 6-loop conformal dimension in real time and then discuss explicit results (found up to 10-loop orders) as well as some general statements about the answer at any loop-order.