I will give an overview of ongoing joint work with R. Rubio and C. Tipler, in which we study the moduli problem for the Strominger system of equations. Building on the work of De la Ossa and Svanes and, independently, of Anderson, Gray and Sharpe, we construct an elliptic complex whose first cohomology group is the space of infinitesimal deformations of a solution of the strominger system. I will also discuss an intriguing link between this moduli problem and a moduli problem for holomorphic Courant algebroids over Calabi-Yau threefolds. Finally, we will see how the problem for the Strominger system embeds naturally in generalized geometry, and discuss some perspectives of this approach.

# Past String Theory Seminar

I will describe the computation of the supersymmetric Renyi entropy across an entangling 3-sphere for five-dimensional superconformal field theories. For a class of USp(2N) gauge theories I’ll also construct a holographic dual 1/2 BPS black hole solution of Euclidean Romans F(4) supergravity. The large N limit of the gauge theory results will be shown to agree perfectly with the supergravity computations.

I will discuss the implementation of explicit stabilisation of all closed string moduli in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. We consider Calabi-Yau manifolds with a discrete symmetry that reduces the effective number of complex structure moduli, which allows us to calculate the corresponding periods and find explicit flux vacua. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario.

I will discuss several recent developments regarding the construction of fluxes for F-theory on Calabi-Yau fourfolds. Of particular importance to the effective physics is the structure of the middle (co)homology groups, on which new results are presented. Fluxes dynamically drive the fourfold to Noether-Lefschetz loci in moduli space. While the structure of such loci is generally unknown for Calabi-Yau fourfolds, this problem can be answered in terms of arithmetic for K3 x K3 and a classification is possible.