Forthcoming events in this series


Mon, 09 Oct 2017
15:45
L6

Topological dimension of the boundaries of some hyperbolic Out(F_n)-graphs

Richard D. Wade
(Oxford)
Abstract

Klarrich showed that the Gromov boundary of the curve complex of a hyperbolic surface is homeomorphic to the space of ending laminations on that surface. Independent results of Bestvina-Reynolds and Hamenstädt give an analogous statement for the free factor graph of a free group, where the space of ending laminations is replaced with a space of equivalence classes of arational trees. I will give an introduction to these objects and describe some joint work with Bestvina and Horbez, where we show that the Gromov boundary of the free factor graph for a free group of rank N has topological dimension at most 2N-2.

Thu, 14 Sep 2017

17:00 - 18:00
L3

Homological stability and meta-stability for mapping class groups

Soren Galatius
(Stanford and Copenhagen)
Abstract

Let \Gamma_{g,1} denote the mapping class group of a genus g surface with one parametrized boundary component.  The group homology H_i(\Gamma_{g,1}) is independent of g, as long as g is large compared to i, by a famous theorem of Harer known as homological stability, now known to hold when 2g > 3i.  Outside that range, the relative homology groups H_i(\Gamma_{g,1},\Gamma_{g-1,1}) contain interesting information about the failure of homological stability.  In this talk, I will discuss a metastability result; the relative groups depend only on the number k = 2g-3i, as long as g is large compared to k.  This is joint work with Alexander Kupers and Oscar Randal-Williams.

Thu, 14 Sep 2017

15:30 - 16:30
L3

The smooth homotopy category

Graeme Segal
(Oxford)
Abstract

The smooth homotopy category is a simultaneous enlargement of the usual homotopy category and of the category of smooth manifolds. Its structure can be described very simply and explicitly by a version of van Est's theorem.  It provides us with an  interpolation between topology and geometry (and with a toy model of derived algebraic geometry and motivic homotopy theory, though I shall not pursue those directions).  My talk will list some situations which the category seems to illuminate: one will be Kapranov's beautiful description of the Lie algebra of the 'group' of based loops in a manifold.
 

Mon, 12 Jun 2017

15:45 - 16:45
L6

Are CAT(0) spaces determined by their boundaries?

Ruth Charney
(Brandeis University)
Abstract

Boundaries of hyperbolic spaces have played a key role in low dimensional topology and geometric group theory.  In 1993, Paulin showed that the topology of the boundary of a (Gromov) hyperbolic space, together with its quasi-mobius structure, determines the space up to quasi-isometry.  One can define an analogous boundary, called the Morse boundary, for any proper geodesic metric space.  I will discuss an analogue of Paulin’s theorem for Morse boundaries of CAT(0) spaces. (Joint work with Devin Murray.)

Mon, 05 Jun 2017

15:45 - 16:45
L6

tba

Cameron Gordon
Mon, 22 May 2017

15:45 - 16:45
L6

Link cobordisms and TQFTs in Heegaard Floer homology

Ian Zemke
Abstract

We will discuss a construction of cobordism maps on the full link complex for decorated link cobordisms. We will focus on some formal properties, such as grading change formulas and local relations. We will see how several expressions for mapping class group actions can be interpreted in terms of pictorial relations on decorated surfaces. Similarly, we will see how these pictorial relations give a "connected sum formula" for the involutive concordance invariants of Hendricks and Manolescu.

Mon, 15 May 2017

15:45 - 16:45
L6

Fully extended twisted field theories

Claudia Scheimbauer
Abstract


After giving an introduction to functorial field theories I will explain a natural generalization thereof, called "twisted" field theories by Stolz-Teichner. The definition uses the notion of lax or oplax natural transformations of strong functors of higher categories for which I will sketch a framework. I will discuss the fully extended case, which gives a comparison to Freed-Teleman's "relative" boundary field theories. Finally, I will explain some examples, one of which explicitly arises from factorization homology and whose target is the higher Morita category of E_n-algebras, bimodules, bimodules of bimodules etc.

Mon, 08 May 2017

15:45 - 16:45
L6

2-Segal spaces and higher categorical bialgebras

Mark Penney
(Oxford)
Abstract


An efficient way to descibe binary operations which are associative only up to coherent homotopy is via simplicial spaces. 2-Segal spaces were introduced independently by Dyckerhoff--Kapranov and G\'alvez-Carrillo--Kock--Tonks to encode spaces carrying multivalued, coherently associative products. For example, the Waldhausen S-construction of an abelian category is a 2-Segal space. It describes a multivalued product on the space of objects given in terms of short exact sequences. 
The main motivation to study spaces carrying multivalued products is that they can be linearised, producing algebras in the usual sense of the word. For the preceding example, the linearisation yields the Hall algebra of the abelian category. One can also extract tensor categories using a categorical linearisation procedure.
In this talk I will discuss double 2-Segal spaces, that is, bisimplicial spaces which satisfy the 2-Segal condition in each variable. Such bisimplicial spaces give rise to multivalued bialgebras. The second iteration of the Waldhausen S-construction is a double 2-Segal space whose linearisation is the bialgebra structure given by Green's Theorem. The categorial linearisation produces categorifications of Zelevinsky's positive, self-adjoint Hopf algebras.
 

Mon, 24 Apr 2017

15:45 - 16:45
L6

Heegaard Floer homology and deformation of curve singularities

Marco Golla
Abstract

Knots and links naturally appear in the neighbourhood of the singularity of a complex curve; this creates a bridge between algebraic geometry and differential topology. I will discuss a topological approach to the study of 1-parameter families of singular curves, using correction terms in Heegaard Floer homology. This is joint work with József Bodnár and Daniele Celoria.

Mon, 13 Mar 2017

15:30 - 16:30
L5

Stable twisted cohomology via scanning

Oscar Randal-Williams
(Cambridge)
Abstract

The technique of scanning, or the parameterised Pontrjagin--Thom construction, has been extraordinarily successful in calculating the cohomology of configuration spaces (McDuff), moduli spaces of Riemann surfaces (Madsen, Tillmann, Weiss), moduli spaces of graphs (Galatius), and moduli spaces of manifolds of higher dimension (Galatius, R-W, Botvinnik, Perlmutter), with constant coefficients. In each case the method also works to study the cohomology of moduli spaces of objects equipped with a "tangential structure". I will explain how choosing an auxiliary highly-symmetric tangential structure often lets one calculate the cohomology of these moduli spaces with large families of twisted coefficients, by exploiting the symmetries of the tangential structure and using a little representation theory.

 

Mon, 13 Mar 2017

14:00 - 15:00
L5

Operad groups and the homology of the Higman-Thompson groups

Nathalie Wahl
(Copenhagen)
Abstract

 Markus Szymik and I computed the homology of the Higman-Thompson groups by first showing that they stabilize (with slope 0), and then computing the stable homology. I will in this talk give a new point of view on the computation of the stable homology using Thumann's "operad groups". I will also give an idea of how scanning methods can enter the picture. (This is partially joint work with Søren Galatius.) 

Mon, 13 Mar 2017

11:30 - 12:30
L5

Homotopical properties of the diffeomorphism group of a smooth homotopy sphere

Michael Weiss
(Muenster)
Abstract

It is hard to detect the exotic nature of an exotic n-sphere M 
in homotopical features of the diffeomorphism group Diff(M). The well 
known reason is that Diff(M) contains a big topological subgroup H which 
is identified with the group of diffeomorphisms rel boundary of the 
n-disk, with a small coset space Diff(M)/H which is invariably homotopy 
equivalent to O(n+1). Therefore it seems that our only chance to detect 
the exotic nature of M in homotopical features of Diff(M) is to see 
something in this extension.  (To make sense of "homotopical features of 
Diff(M)" one should think of Diff(M) as a space with a multiplication 
acting on an n-sphere.) I am planning to report on PhD work of O Sommer 
and calculations due to myself and Sommer which, if all goes well, would 
show that Diff(M) has some exotic homotopical properties in the case 
where M is the 7-dimensional exotic sphere of Kervaire-Milnor fame which 
bounds a compact smooth framed 8-manifold of signature 8. The 
theoretical work is based on classical smoothing theory and the 
calculations would be based on ever-ongoing (>30 years) joint work 
Weiss-Williams, and might give me and Williams another valuable 
incentive to finish it.

Mon, 13 Mar 2017

11:00 - 11:30
L5

Diffeomorphism-equivariant configuration spaces with twisted summable labels

Hongyun Yon
(Oxford)
Abstract

We construct the diffeomorphism-equivariant “scanning map” associated to the configuration spaces of manifolds with twisted summable labels. The scanning map is also functorial with respect to embeddings of manifolds. To adapt P. Salvatore's idea of non-commutative summation into twisted setting, we define a bundle of Fulton-MacPherson operads over a manifold M whose fibres are built within tangent spaces of M.

Mon, 13 Mar 2017

09:30 - 10:30
L5

Surgery on manifolds: the early days

Terry Wall
(Liverpool)
Abstract

In 1956 Milnor published a paper proving that there are manifolds homeomorphic to the 7-sphere but not diffeomorphic to it. Seeking to generalise this example, he was led in around 1960 to introduce a construction for  killing homotopy groups of manifolds. When this was generalised to killing relative homotopy groups it became a general and powerful method of construction. An obstruction arises to killing the last group, and the analysis of this obstruction in general leads to a new theory.

Mon, 13 Mar 2017

08:45 - 17:45
L5

OAC-manifolds meeting

https://people.maths.ox.ac.uk/tillmann/OAC-manifolds.html
Mon, 06 Mar 2017

15:45 - 16:45
L6

Random 3-manifolds and towers of their covers

Ursula Hamenstaedt
(Bonn)
Abstract

Any closed 3-manifold can be obtained by glueing two handle bodies along their boundary. For a fixed such glueing, any other differs by changing the glueing map by an element in the mapping class group. Beginning with an idea of Dunfield and Thurston, we can use a random walk on the mapping class group to construct random 3-manifolds. I will report on recent work on the structure of such manifolds, in particular in view of tower of coverings and their topological growth: Torsion homology growth, the minimal degree of a cover with positive Betti number, expander families. I will in particularly explain the connection to some open questions about the mapping class group.

Mon, 27 Feb 2017
15:45
L6

From moduli spaces of manifolds to K-theory

Ulrike Tillmann
(Oxford)
Abstract

For mapping class groups of surfaces it is well-understood that their homology stability is closely related to the fact that they give rise to an infinite loop space. Indeed, they define an operad whose algebras group complete to infinite loop spaces.

In recent work with Basterra, Bobkova, Ponto and Yaekel we define operads with homology stability (OHS) more generally and prove that they are infinite loop space operads in the above sense. The strong homology stability results of Galatius and Randal-Williams for moduli spaces of manifolds can be used to construct examples of OHSs. As a consequence the map to K-theory defined by the action of the diffeomorphisms on the middle dimensional homology can be shown to be a map of infinite loop spaces.

Mon, 20 Feb 2017

15:45 - 16:45
L6

C-equivariant elliptic cohomology when C is a fusion category

Andre Henriques
(Oxford)
Abstract

Elliptic cohomology is a family of generalised cohomology theories
$Ell_E^*$ parametrised by an elliptic curve $E$ (over some ring $R$).
Just like many other cohomology theories, elliptic cohomology admits
equivariant versions. In this talk, I will recall an old conjectural
description of elliptic cohomology, due to G. Segal, S. Stolz and P.
Teichner. I will explain how that conjectural description led me to
suspect that there should exist a generalisation of equivariant
elliptic cohomology, where the group of equivariance gets replaced by
a fusion category. Finally, I will construct $C$-equivariant elliptic
cohomology when $C$ is a fusion category, and $R$ is a ring of
characteristc zero.

Mon, 13 Feb 2017

15:45 - 16:45
L6

The SO(3) action on the space of finite tensor categories

Noah Snyder
(Indiana University)
Abstract

The cobordism hypothesis gives a correspondence between the
framed local topological field theories with values in C and a fully
dualizable objects in C.  Changing framing gives an O(n) action on the
space of local TFTs, and hence by the cobordism hypothesis it gives a
(homotopy coherent) action of O(n) on the space of fully dualizable
objects in C.  One example of this phenomenon is that O(3) acts on the
space of fusion categories.  In fact, O(3) acts on the larger space of
finite tensor categories.  I'll describe this action explicitly and
discuss its relationship to the double dual, Radford's theorem,
pivotal structures, and spherical structures.  This is part of work in
progress joint with Chris Douglas and Chris Schommer-Pries.
 

Mon, 06 Feb 2017

15:45 - 16:45
L6

Guirardel cores for multiple cubulations of a group

Mark Hagen
(Cambridge)
Abstract

Given two actions of a group $G$ on trees $T_1,T_2$, Guirardel introduced the "core", a $G$--cocompact CAT(0) subspace of $T_1\times
T_2$.  The covolume of the core is a natural notion of "intersection number" for the two tree actions (for example, if $G$ is a surface group
and $T_1,T_2$ are Bass-Serre trees associated to splittings along some curves, this "intersection number" is the one you'd expect).  We
generalise this construction by considering a fixed finitely-presented group $G$ equipped with finitely many essential, cocompact actions on
CAT(0) cube complexes $X_1,...,X_d$.  Inside $X=X_1\times ... \times X_d$, we find a $G$--invariant subcomplex $C$ which, although not convex
or necessarily CAT(0), has each component isometrically embedded with respect to the $\ell_1$ metric on $X$ (the key point is this change from
the CAT(0) to the $\ell_1$ viewpoint).  In the case where $d=2$ and $X_1,X_2$ are simplicial trees, $C$ is the Guirardel core.  Many
features of the Guirardel core generalise, and I will summarise these. For example, if the cubulations $G\to Aut(X_i)$ are "essentially
different", then $C$ is connected and $G$--cocompact.  Time permitting, I will discuss an application, namely a new proof of Nielsen realisation
for finite subgroups of $Out(F_n)$.  This talk is based on ongoing joint work with Henry Wilton.

Mon, 23 Jan 2017

15:45 - 16:45
L6

Discrete Morse theory and classifying spaces

Vidit Nanda
(Oxford and The Turing Institute)
Abstract

Large-scale homology computations are often rendered tractable by discrete Morse theory. Every discrete Morse function on a given cell complex X produces a Morse chain complex whose chain groups are spanned by critical cells and whose homology is isomorphic to that of X. However, the space-level information is typically lost because very little is known about how critical cells are attached to each other. In this talk, we discretize a beautiful construction of Cohen, Jones and Segal in order to completely recover the homotopy type of X from an overlaid discrete Morse function.

Mon, 16 Jan 2017

15:45 - 16:45
L6

Coarse embeddings, and how to avoid them

David Hume
(Oxford)
Abstract

Coarse embeddings occur completely naturally in geometric group theory: every finitely generated subgroup of a finitely generated group is coarsely embedded. Since even very nice classes of groups - hyperbolic groups or right-angled Artin groups for example - are known to have 'wild' collections of subgroups, there are precious few invariants that one may use to prove a statement of the form '$H$ does not coarsely embed into $G$' for two finitely generated groups $G,H$.
The growth function and the asymptotic dimension are two coarse invariants which which have been extensively studied, and a more recent invariant is the separation profile of Benjamini-Schramm-Timar.

In this talk I will describe a new spectrum of coarse invariants, which include both the separation profile and the growth function, and can be used to tackle many interesting problems, for instance: Does there exist a coarse embedding of the Baumslag-Solitar group $BS(1,2)$ or the lamplighter group $\mathbb{Z}_2\wr\mathbb{Z}$ into a hyperbolic group?

This is part of an ongoing collaboration with John Mackay and Romain Tessera.
 

Mon, 28 Nov 2016

15:45 - 16:45
L6

Coefficients for commutative K-theory

Simon Gritschacher
(Oxford)
Abstract

I will begin the talk by reviewing the definition of commutative K-theory, a generalized cohomology theory introduced by Adem and Gomez. It is a refinement of topological K-theory, where the transition functions of a vector bundle satisfy a commutativity condition. The theory is represented by an infinite loop space which is called a “classifying space for commutativity”.  I will describe the homotopy type of this infinite loop space. Then I will discuss the graded ring structure on its homotopy groups, which corresponds to the tensor product of vector bundles.
 

Mon, 21 Nov 2016

15:45 - 16:45
L6

Configuration spaces of hard disks

Matthew Kahle
(Ohio State University)
Abstract

Configuration spaces of points in a manifold are well studied. Giving the points thickness has obvious physical meaning: the configuration space of non-overlapping particles is equivalent to the phase space, or energy landscape, of a hard spheres gas. But despite their intrinsic appeal, relatively little is known so far about the topology of such spaces. I will overview some recent work in this area, including a theorem with Yuliy Baryshnikov and Peter Bubenik that related the topology of these spaces to mechanically balanced, or jammed, configurations. I will also discuss work in progress with Robert MacPherson on hard disks in an infinite strip, where we understand the asymptotics of the Betti numbers as the number of disks tends to infinity. In the end, we see a kind of topological analogue of a liquid-gas phase transition.