Forthcoming events in this series


Mon, 16 Nov 2015
15:45
L6

Characterizing a vertex-transitive graph by a large ball

Romain Tessera
(Université Paris XI, ORSAY)
Abstract

It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. We will prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we will exhibit various examples of Cayley graphs of finitely presented groups (e.g. PGL(5, Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. This is a joint work with Mikael de la Salle.

Mon, 09 Nov 2015
15:45
L6

Koszul duality patterns in Floer theory

Yanki Lekili
(King's College London)
Abstract

We study symplectic invariants of the open symplectic manifolds X
obtained by plumbing cotangent bundles of spheres according to a
plumbing tree. We prove that certain models for the Fukaya category F(X)
of closed exact Lagrangians in X and the wrapped Fukaya category W(X)
are related by Koszul duality. As an application, we give explicit
computations of symplectic cohomology essentially for all trees. This is
joint work with Tolga Etg\"u.

Mon, 02 Nov 2015
15:45
L6

Graphical calculus for 3-dimensional TQFTs

Bruce Bartlett
(Oxford)
Abstract

Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.

Mon, 26 Oct 2015
15:45
L6

A cubical flat torus theorem

Dani Wise
(McGill University and IHP Paris)
Abstract

I will describe a “cubical flat torus theorem” for a group G acting properly and cocompactly on a CAT(0) cube complex.
This states that every “highest” free abelian subgroup of G acts properly and cocompactly on a convex subcomplex that is quasi-isometric to a Euclidean space.
I will describe some simple consequences, as well as the original motivation which was to prove the “bounded packing property” for cyclic subgroups of G.
This is joint work with Daniel Woodhouse.

Mon, 19 Oct 2015
15:45
L6

On the combinatorics of the two-dimensional Ising model

David Cimasoni
(University of Geneva)
Abstract

In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
 

Mon, 12 Oct 2015
15:45
L6

Fixed Point Properties and Proper Actions on Non-positively Curved Spaces and on Banach Spaces

Cornelia Drutu
(Oxford)
Abstract

One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.

Mon, 05 Oct 2015
15:45
L6

Quasicircles

Yves Benoist
(Université Paris XI, ORSAY)
Abstract

If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.

Mon, 29 Jun 2015
15:45
L6

On Unoriented Topological Conformal Field Theories

Ramses Fernandez-Valencia
(Oxford)
Abstract

We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.

Mon, 15 Jun 2015
15:45
L6

Coarse rigidity for Teichm\"uller space

Brian Bowditch
(Warwick)
Abstract
We describe some results regarding the quasi-isometric rigidity of
Teichm\"uller space in either the Teichm\"uller metric or the Weil-Petersson
metric; as well as some other spaces canonically associated to a surface.
A key feature which these spaces have in common is that they admit
a ternary operation, which in an appropriate sense, satisfies the
axioms of a median algebra, up to bounded distance.  This allows
us to set many of the arguments in a general context.
We note that quasi-isometric rigidity of the Teichm\"uller metric has recently
been obtained independently by Eskin, Masur and Rafi by different methods.
Mon, 08 Jun 2015
15:45
L6

Expanders and K-theory for group C* algebras

Paul Baum
(Pennsylvania State University)
Abstract

*/ /*-->*/ Let G be a locally compact Hausdorff topological group. Examples are Lie groups, p-adic groups, adelic groups, and discrete groups. The BC (Baum-Connes) conjecture proposes an answer to the problem of calculating the K-theory of the convolution C* algebra of G. Validity of the conjecture has implications in several different areas of mathematics --- e.g. Novikov conjecture, Gromov-Lawson-Rosenberg conjecture, Dirac exhaustion of the discrete series, Kadison-Kaplansky conjecture. An expander is a sequence  of finite graphs which is efficiently connected. Any discrete group which contains an expander as a sub-graph of its Cayley graph is a counter-example to  the BC conjecture with coefficients. Such discrete groups have been constructed by Gromov-Arjantseva-Delzant and by Damian Osajda. This talk will indicate how to make a correction in BC with coefficients. There are no known counter-examples to the corrected conjecture, and all previously known confirming examples remain confirming examples.

Mon, 01 Jun 2015
15:45
L6

Representations of based loop groups

Andre Henriques
(Utrecht and Oxford)
Abstract

Representations of free loop groups possess an operation, akin to
tensor product, under which they form a braided tensor category. I
will discuss a similar operation, which is present on the category of
representations of the based loop groups, and which equips it with the
structure of a monoidal cateogory. Finally, I will present a recent
result, according to which the Drinfel'd centre of the category of
representations of a based loop group is equivalent to the category of
representations of the corresponding free loop group.

Mon, 18 May 2015
15:45
L6

Random graphs and applications to Coxeter groups

Jason Behrstock
(Columbia)
Abstract

Erdos and Renyi introduced a model for studying random graphs of a given "density" and proved that there is a sharp threshold at which lower density random graphs are disconnected and higher density ones are connected.  Motivated by ideas in geometric group theory we will explain some new threshold theorems we have discovered for random graphs.  We will then, explain applications of these results to the geometry of Coxeter groups.  Some of this talk will be on joint work with Hagen and Sisto; other parts are joint work with Hagen, Susse, and Falgas-Ravry.

Mon, 11 May 2015
15:45
L6

The Triangulation Conjecture

Ciprian Manolescu
(UCLA)
Abstract

The triangulation conjecture stated that any n-dimensional topological manifold is homeomorphic to a simplicial complex. It is true in dimensions at most 3, but false in dimension 4 by the work of Casson and Freedman. In this talk I will explain the proof that the conjecture is also false in higher dimensions. This result is based on previous work of Galewski-Stern and Matumoto, who reduced the problem to a question in low dimensions (the existence of elements of order 2 and Rokhlin invariant one in the 3-dimensional homology cobordism group). The low-dimensional question can be answered in the negative using a variant of Floer homology, Pin(2)-equivariant Seiberg-Witten Floer homology. At the end I will also discuss a related version of Heegaard Floer homology, which is more computable.

Mon, 27 Apr 2015
15:45
L6

On Cayley graphs of relatively hyperbolic groups

Laura Ciobanu
(Neuchatel)
Abstract

In this talk I will show how given a finitely generated relatively hyperbolic group G, one can construct a finite generating set X of G for which (G,X) has a number of metric properties, provided that the parabolic subgroups have these properties. I will discuss the applications of these properties to the growth series, language of geodesics, biautomatic structures and conjugacy problem. This is joint work with Yago Antolin.

Mon, 20 Apr 2015
15:45
L6

Homological stability for configuration spaces on closed manifolds

Martin Palmer
(Muenster)
Abstract

Unordered configuration spaces on (connected) manifolds are basic objects
that appear in connection with many different areas of topology. When the
manifold M is non-compact, a theorem of McDuff and Segal states that these
spaces satisfy a phenomenon known as homological stability: fixing q, the
homology groups H_q(C_k(M)) are eventually independent of k. Here, C_k(M)
denotes the space of k-point configurations and homology is taken with
coefficients in Z. However, this statement is in general false for closed
manifolds M, although some conditional results in this direction are known.

I will explain some recent joint work with Federico Cantero, in which we
extend all the previously known results in this situation. One key idea is
to introduce so-called "replication maps" between configuration spaces,
which in a sense replace the "stabilisation maps" that exist only in the
case of non-compact manifolds. One corollary of our results is to recover a
"homological periodicity" theorem of Nagpal -- taking homology with field
coefficients and fixing q, the sequence of homology groups H_q(C_k(M)) is
eventually periodic in k -- and we obtain a much simpler estimate for the
period. Another result is that homological stability holds with Z[1/2]
coefficients whenever M is odd-dimensional, and in fact we improve this to
stability with Z coefficients for 3- and 7-dimensional manifolds.

Mon, 09 Mar 2015
15:45
L6

Non-arithmetic lattices

John Parker
(Durham)
Abstract

If G is a semi-simple Lie group, it is known that all lattices
are arithmetic unless (up to finite index) G=SO(n,1) or SU(n,1).
Non-arithmetic lattices have been constructed in SO(n,1) for
all n and there are infinitely many non-arithmetic lattices in
SU(1,1). Mostow and Deligne-Mostow constructed 9 commensurability
classes of non-arithmetic lattices in SU(2,1) and a single
example in SU(3,1). The problem is open for n at least 4.
I will survey the history of this problem, and then describe
recent joint work with Martin Deraux and Julien Paupert, where
we construct 10 new commensurability classes of non-arithmetic
lattices in SU(2,1). These are the first examples to be constructed
since the work of Deligne and Mostow in 1986.

Mon, 02 Mar 2015
15:45
L6

Sharply multiply transitive locally compact groups

Pierre-Emmanuel Caprace
(Louvain-La-Neuve)
Abstract
A permutation group is called sharply n-transitive if it acts 

freely and transitively on the set of ordered n-tuples of distinct 

points. The investigation of such permutation groups is a classical 

branch of group theory; it led Emile Mathieu to the discovery of the 

smallest finite simple sporadic groups in the 1860's. In this talk I 

will discuss the case where the permutation group is assumed to be a 

locally compact transformation group, and explain how this set-up is 

related to Gromov hyperbolicity and to arithmetic lattices in products 

of trees.
Mon, 23 Feb 2015
15:45
L6

Affine Deligne-Lusztig varieties and the geometry of Euclidean reflection groups

Anne Thomas
(Glasgow)
Abstract

Let $G$ be a reductive group such as $SL_n$ over the field $k((t))$, where $k$ is an algebraic closure of a finite field, and let $W$ be the affine Weyl group of $G$.  The associated affine Deligne-Lusztig varieties $X_x(b)$ were introduced by Rapoport.  These are indexed by elements $x$ in $G$ and $b$ in $W$, and are related to many important concepts in algebraic geometry over fields of positive characteristic.  Basic questions about the varieties $X_x(b)$ which have remained largely open include when they are nonempty, and if nonempty, their dimension.  We use techniques inspired by geometric group theory and representation theory to address these questions in the case that $b$ is a translation.  Our approach is constructive and type-free, sheds new light on the reasons for existing results and conjectures, and reveals new patterns.  Since we work only in the standard apartment of the building for $G$, which is just the tessellation of Euclidean space induced by the action of the reflection group $W$, our results also hold over the p-adics.  This is joint work with Elizabeth Milicevic (Haverford) and Petra Schwer (Karlsruhe).

Mon, 16 Feb 2015
15:45
L6

Balanced walls in random groups

John M. Mackay
(Bristol)
Abstract

Building a suitable family of walls in the Cayley complex of a finitely
presented group G leads to a nontrivial action of G on a CAT(0) cube
complex, which shows that G does not have Kazhdan's property (T).  I
will discuss how this can be done for certain random groups in Gromov's
density model.  Ollivier and Wise (building on earlier work of Wise on
small-cancellation groups) have built suitable walls at densities <1/5,
but their method fails at higher densities.  In recent joint work with
Piotr Przytycki we give a new construction which finds walls at densites
<5/24.

Mon, 09 Feb 2015
15:45
C6

The symmetries of the free factor complex

Martin Bridson
(Oxford)
Abstract

I shall discuss joint work with Mladen Bestvina in which we prove that the group of simplicial automorphisms of the complex of free factors for a
free group $F$ is exactly $Aut(F)$, provided that $F$ has rank at least $3$. I shall begin by sketching the fruitful analogy between automorphism groups of free groups, mapping class groups, and arithmetic lattices, particularly $SL_n({\mathbb{Z}})$. In this analogy, the free factor complex, introduced by Hatcher and Vogtmann, appears as the natural analogue in the $Aut(F)$ setting of the spherical Tits building associated to $SL_n $ and of the curve complex associated to a mapping class group. If $n>2$, Tits' generalisation of the Fundamental Theorem of Projective Geometry (FTPG) assures us that the automorphism group of the building is $PGL_n({\mathbb{Q}})$. Ivanov proved an analogous theorem for the curve complex, and our theorem complements this. These theorems allow one to identify the abstract commensurators of $GL_n({\mathbb{Z}})$, mapping class groups, and $Out(F)$, as I shall explain.

Mon, 02 Feb 2015
15:45
C6

Closed geodesics and string homology

John Jones
(Warwick)
Abstract

The  study of closed geodesics on a Riemannian manifold is a classical and important part of differential geometry. In 1969 Gromoll and Meyer used Morse - Bott theory to give a topological condition on the loop space of compact manifold M which ensures that any Riemannian metric on M has an infinite number of closed geodesics.  This makes a very close connection between closed geodesics and the topology of loop spaces.  

Nowadays it is known that there is a rich algebraic structure associated to the topology of loop spaces — this is the theory of string homology initiated by Chas and Sullivan in 1999.  In recent work, in collaboration with John McCleary, we have used the ideas of string homology to give new results on the existence of an infinite number of closed  geodesics. I will explain some of the key ideas in our approach to what has come to be known as the closed geodesics problem.

Mon, 26 Jan 2015
15:45
C6

The hyperbolic geometry of alternating knot complements

Marc Lackenby
(Oxford)
Abstract

By Thurston's geometrisation theorem, the complement of any knot admits a unique hyperbolic structure, provided that the knot is not the unknot, a torus knot or a satellite knot. However, this is purely an existence result, and does not give any information about important geometric quantities, such as volume, cusp volume or the length and location of short geodesics. In my talk, I will explain how some of this information may be computed easily, in the case of alternating knots. The arguments involve a detailed analysis of the geometry of certain subsurfaces.

Mon, 19 Jan 2015
15:45
C6

Infinite loop spaces and positive scalar curvature

Oscar Randal-Williams
(Cambridge)
Abstract

It is well known that there are topological obstructions to a manifold $M$ admitting a Riemannian metric of everywhere positive scalar curvature (psc): if $M$ is Spin and admits a psc metric, the Lichnerowicz–Weitzenböck formula implies that the Dirac operator of $M$ is invertible, so the vanishing of the $\hat{A}$ genus is a necessary topological condition for such a manifold to admit a psc metric. If $M$ is simply-connected as well as Spin, then deep work of Gromov--Lawson, Schoen--Yau, and Stolz implies that the vanishing of (a small refinement of) the $\hat{A}$ genus is a sufficient condition for admitting a psc metric. For non-simply-connected manifolds, sufficient conditions for a manifold to admit a psc metric are not yet understood, and are a topic of much current research.

I will discuss a related but somewhat different problem: if $M$ does admit a psc metric, what is the topology of the space $\mathcal{R}^+(M)$ of all psc metrics on it? Recent work of V. Chernysh and M. Walsh shows that this problem is unchanged when modifying $M$ by certain surgeries, and I will explain how this can be used along with work of Galatius and myself to show that the algebraic topology of $\mathcal{R}^+(M)$ for $M$  of dimension at least 6 is "as complicated as can possibly be detected by index-theory". This is joint work with Boris Botvinnik and Johannes Ebert.

Mon, 01 Dec 2014

15:45 - 16:45
C6

Extended 3-dimensional topological field theories

Chris Schommer-Pries
(MPI Bonn)
Abstract

I will survey recent advances in our understanding of extended
3-dimensional topological field theories. I will describe recent work (joint
with B. Bartlett, C. Douglas, and J. Vicary) which gives an explicit
"generators and relations" classification of partially extended 3D TFTS
(assigning values only to 3-manifolds, surfaces, and 1-manifolds). This will
be compared to the fully-local case (which has been considered in joint work
with C. Douglas and N. Snyder).