It is a classical theorem of Magnus that the word problem for one-relator groups is solvable; its precise complexity remains unknown. A geometric characterization of the complexity is given by the Dehn function. I will present joint work with Daniel Woodhouse showing that one-relator groups have a rich collection of Dehn functions, including the Brady--Bridson snowflake groups on which our work relies.

# Past Forthcoming Seminars

We present some recent results on the regularity criteria for weak solutions to the incompressible Navier--Stokes equations (NSE) in 3 dimensions. By the work of Constantin--Fefferman, it is known that the alignment of vorticity directions is crucial to the regularity of NSE in $\R^3$. In this talk we show a boundary regularity theorem for NSE on curvilinear domains with oblique derivative boundary conditions. As an application, the boundary regularity of incompressible flows on balls, cylinders and half-spaces with Navier boundary condition is established, provided that the vorticity is coherently aligned up to the boundary. The effects of vorticity alignment on the $L^q$, $1<q<\infty$ norm of the vorticity will also be discussed.

We develop a structure theory for del Pezzo surfaces that are regular but geometrically non-normal, based on work of Reid, but now independence on the p-degree of the ground field. This leads to existence results, as well as non-existence results for ground fields of p-degree one. In turn, we settle questions arising from Koll'ar's analysis on the structure of Mori fiber spaces in dimension three. This is joint work with Andrea Fanelli.

Low-rank plus sparse matrices arise in many data-oriented applications, most notably in a foreground-background separation from a moving camera. It is known that low-rank matrix recovery from a few entries (low-rank matrix completion) requires low coherence (Candes et al 2009) as in the extreme cases when the low-rank matrix is also sparse, where matrix completion can miss information and be unrecoverable. However, the requirement of low coherence does not suffice in the low-rank plus sparse model, as the set of low-rank plus sparse matrices is not closed. We will discuss the relation of non-closedness of the low-rank plus sparse model to the notion of matrix rigidity function in complexity theory.

Let $F$ be a non-Archimedean local field with ring of integers $\mathcal O$ and maximal ideal $\mathfrak p$. T. Shintani and G. Hill independently introduced a large class of smooth representations of $GL_N(\mathcal O)$, called regular representations. Roughly speaking they correspond to elements in the Lie algebra $M_N(\mathcal O)$ which are regular mod $\mathfrak p$ (i.e, having centraliser of dimension $N$). The study of regular representations of $GL_N(\mathcal O)$ goes back to Shintani in the 1960s, and independently and later, Hill, who both constructed the regular representations with even conductor, but left the much harder case of odd conductor open. In recent simultaneous and independent work, Krakovski, Onn and Singla gave a construction of the regular representations of $GL_N(\mathcal O)$ when the residue characteristic of $\mathcal O$ is not $2$.

In this talk I will present a complete construction of all the regular representations of $GL_N(\mathcal O)$. The approach is analogous to, and motivated by, the construction of supercuspidal representations of $GL_N(F)$ due to Bushnell and Kutzko. This is joint work with Shaun Stevens.

The object of this talk is a class of generalised Newtonian fluids with implicit constitutive law.

Both in the steady and the unsteady case, existence of weak solutions was proven by Bul\'\i{}\v{c}ek et al. (2009, 2012) and the main challenge is the small growth exponent qq and the implicit law.

I will discuss the application of a splitting and regularising strategy to show convergence of FEM approximations to weak solutions of the flow.

In the steady case this allows to cover the full range of growth exponents and thus generalises existing work of Diening et al. (2013). If time permits, I will also address the unsteady case.

This is joint work with Endre Suli.

Protein interaction networks (PINs) allow the representation and analysis of biological processes in cells. Because cells are dynamic and adaptive, these processes change over time. Thus far, research has focused either on the static PIN analysis or the temporal nature of gene expression. By analysing temporal PINs using multilayer networks, we want to link these efforts. The analysis of temporal PINs gives insights into how proteins, individually and in their entirety, change their biological functions. We present a general procedure that integrates temporal gene expression information with a monolayer PIN to a temporal PIN and allows the detection of modular structure using multilayer modularity maximisation.

In this talk, I will present the construction of a family of solutions to

vacuum Einstein equations which consist of an arbitrary number of high

frequency waves travelling in different directions. In the high frequency

limit, our family of solutions converges to a solution of Einstein equations

coupled to null dusts. This construction is an illustration of the so called

backreaction, studied by physicists (Isaacson, Burnet, Green, Wald...) : the

small scale inhomogeneities have an effect on the large scale dynamics in

the form of an energy impulsion tensor in the right-hand side of Einstein

equations. This is a joint work with Jonathan Luk (Stanford).

I will present some recent results obtained in collaboration with V. Banica and F. de la Hoz on the evolution of vortex filaments according to the so called Localized Induction Approximation (LIA). This approximation is given by a non-linear geometric partial differential equation, that is known under the name of the Vortex Filament Equation (VFE). The aim of the talk is threefold. First, I will recall the Talbot effect of linear optics. Secondly, I will give some explicit solutions of VFE where this Talbot effect is also present. Finally, I will consider some questions concerning the transfer of energy and momentum for these explicit solutions.