Past Forthcoming Seminars

1 August 2017
15:30
Abstract

Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.

The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.

The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.

In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.

The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.

 

  • OxPDE Special Seminar
1 August 2017
14:00
Abstract

Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.

The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.

As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.

The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.

In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.

The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.

In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.

  • OxPDE Special Seminar
31 July 2017
12:00
to
13:15
Claude LeBrun
Abstract


  Any constant-scalar-curvature Kaehler (cscK) metric on a complex surface may be viewed as a solution of the Einstein-Maxwell equations, and this allows one to produce solutions of these equations on any 4-manifold that arises as a compact complex surface with even first Betti number. However, not all solutions of the Einstein-Maxwell equations on such manifolds arise in this way. In this lecture, I will describe a construction of new compact examples that are Hermitian, but not Kaehler.
 

10 July 2017
14:30
Peter Nyikos
Abstract

The talk will focus on five items:

Theorem 1. It is ZFC-independent whether every locally compact, $\omega_1$-compact space of cardinality $\aleph_1$  is the union of countably many countably compact spaces.

Problem 1. Is it consistent that every locally compact, $\omega_1$-compact space of cardinality $\aleph_2$  is the union of countably many countably compact spaces?

[`$\omega_1$-compact' means that every closed discrete subspace is countable. This is obviously implied by being the union of countably many countably compact spaces, but the converse is not true.]

Problem 2. Is ZFC enough to imply that there is  a normal, locally countable, countably compact space of cardinality greater than $\aleph_1$?

Problem 3. Is it consistent that there exists a normal, locally countable, countably compact space of cardinality greater than $\aleph_2$?

The spaces involved in Problem 2 and Problem 3 are automatically locally compact, because by "space" I mean "Hausdorff space" and so regularity is already enough to give every point a countable countably compact (hence compact) neighborhood.

Theorem 2. The axiom $\square_{\aleph_1}$ implies that there is a normal, locally countable, countably compact space of cardinality $\aleph_2$.

This may be the first application of $\square_{\aleph_1}$ to construct a topological space whose existence in ZFC is unknown.

  • Analytic Topology in Mathematics and Computer Science
28 June 2017
17:00
to
18:15
Sanjeev Goyal
Abstract

Oxford Mathematics Public Lectures

The Law of the Few - Sanjeev Goyal

The study of networks offers a fruitful approach to understanding human behaviour. Sanjeev Goyal is one of its pioneers. In this lecture Sanjeev presents a puzzle:

In social communities, the vast majority of individuals get their information from a very small subset of the group – the influencers, connectors, and opinion leaders. But empirical research suggests that there are only minor differences between the influencers and the others. Using mathematical modelling of individual activity and networking and experiments with human subjects, Sanjeev helps explain the puzzle and the economic trade-offs it contains.

Professor Sanjeev Goyal FBA is the Chair of the Economics Faculty at the University of Cambridge and was the founding Director of the Cambridge-INET Institute.

28 June 2017, 5.00-6.00pm, Lecture Theatre 1, Mathematical Institute Oxford.

Please email external-relations@maths.ox.ac.uk to register

21 June 2017
15:00
Abstract

In this lecture, we present  practical and provably
secure (authenticated) key exchange protocol and password
authenticated key exchange protocol, which are based on the
learning with errors problems. These protocols are conceptually
simple and have strong provable security properties.
This type of new constructions were started in 2011-2012.
These protocols are shown indeed practical.  We will explain
that all the existing LWE based key exchanges are variants
of this fundamental design.  In addition, we will explain
some issues with key reuse and how to use the signal function
invented for KE for authentication schemes.

  • Cryptography Seminar
20 June 2017
14:00
Professor Wolfgang Hackbusch
Abstract

Starting from an example in quantum chemistry, we explain the techniques of Numerical Tensor Calculus with particular emphasis on the convolution operation. The tensorisation technique also applies to one-dimensional grid functions and allows to perform the convolution with a cost which may be much cheaper than the fast Fourier transform.

  • Numerical Analysis Group Internal Seminar

Pages